Skip to main content

Advertisement

Log in

Murine Flt3 ligand-generated plasmacytoid and conventional dendritic cells display functional differentiation in activation, inflammation, and antigen presentation during BCG infection in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Dendritic cells (DCs) are composed of distinct subsets. Their immunologic functions (especially in pathogenic infection, such as with mycobacteria) are poorly understood, largely because of their rarity and difficulty of preparation. We used the murine Fms-like tyrosine kinase 3 (Flt3) ligand to generate conventional DCs (FL-cDCs) and plasmacytoid DCs (FL-pDCs) and further evaluated their immunological responses to bacillus Calmette–Guérin (BCG) infection in vitro. BCG cells were observed inside both FL-cDCs and FL-pDCs by confocal microscopy, as confirmed by flow cytometric analysis showing a low infection rate of approximately 6 %, which was similar to in vivo results. The CD40, CD80, CD86, and MHC-II proteins were significantly upregulated in both FL-cDCs and -pDCs beginning at 4 h post-BCG exposure. FL-pDCs secreted TNF-α and IL-6 earlier and at significantly higher levels in the first 12 h following infection, but demonstrated delayed and weak activation and maturation compared to FL-cDCs. Although both subsets proved capable of presenting a mycobacterial antigen, FL-pDCs exhibited weaker activity in this respect than did FL-cDCs. In summary, the existence of FL-generated cDCs and pDCs imply functional differentiation in activation, inflammation, and antigen presentation, although both cells types participated extensively in the immune response to BCG infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Alvarez D, Vollmann EH, von Andrian UH (2008) Mechanisms and consequences of dendritic cell migration. Immunity 29:325–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behar SM, Martin CJ, Nunes-Alves C, Divangahi M, Remold HG (2011) Lipids, apoptosis, and cross-presentation: links in the chain of host defense against Mycobacterium tuberculosis. Microbes Infect 13:749–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodnar KA, Serbina NV, Flynn JL (2001) Fate of Mycobacterium tuberculosis within murine dendritic cells. Infect Immun 69:800–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond E, Liang F, Sandgren KJ, Smed-Sorensen A, Bergman P, Brighenti S, Adams WC, Betemariam SA, Rangaka MX, Lange C, Wilkinson RJ, Andersson J, Lore K (2012) Plasmacytoid dendritic cells infiltrate the skin in positive tuberculin skin test indurations. J Invest Dermatol 132:114–123

    Article  CAS  PubMed  Google Scholar 

  • Cheadle EJ, Selby PJ, Jackson AM (2003) Mycobacterium bovis bacillus Calmette-Guerin-infected dendritic cells potently activate autologous T cells via a B7 and interleukin-12-dependent mechanism. Immunology 108:79–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Wilkinson A, Idris A, Fancke B, O’Keeffe M, Khalil D, Ju X, Lahoud MH, Caminschi I, Shortman K, Rodwell R, Vuckovic S, Radford KJ (2014) FLT3-ligand treatment of humanized mice results in the generation of large numbers of CD141+ and CD1c+ dendritic cells in vivo. J Immunol 192:1982–1989

    Article  CAS  PubMed  Google Scholar 

  • Dorhoi A, Kaufmann SH (2014) Tumor necrosis factor alpha in mycobacterial infection. Semin Immunol 26:203–209

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Juarrero M, Orme IM (2001) Characterization of murine lung dendritic cells infected with Mycobacterium tuberculosis. Infect Immun 69:1127–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanekom WA, Mendillo M, Manca C, Haslett PA, Siddiqui MR, Barry C 3rd, Kaplan G (2003) Mycobacterium tuberculosis inhibits maturation of human monocyte-derived dendritic cells in vitro. J Infect Dis 188:257–266

    Article  CAS  PubMed  Google Scholar 

  • Hoeffel G, Ripoche AC, Matheoud D, Nascimbeni M, Escriou N, Lebon P, Heshmati F, Guillet JG, Gannage M, Caillat-Zucman S, Casartelli N, Schwartz O, De la Salle H, Hanau D, Hosmalin A, Maranon C (2007) Antigen crosspresentation by human plasmacytoid dendritic cells. Immunity 27:481–492

    Article  CAS  PubMed  Google Scholar 

  • Jacobs B, Wuttke M, Papewalis C, Seissler J, Schott M (2008) Dendritic cell subtypes and in vitro generation of dendritic cells. Horm Metab Res 40:99–107

    Article  CAS  PubMed  Google Scholar 

  • Jiao X, Lo-Man R, Guermonprez P, Fiette L, Deriaud E, Burgaud S, Gicquel B, Winter N, Leclerc C (2002) Dendritic cells are host cells for mycobacteria in vivo that trigger innate and acquired immunity. J Immunol 168:1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Johansen P, Fettelschoss A, Amstutz B, Selchow P, Waeckerle-Men Y, Keller P, Deretic V, Held L, Kundig TM, Bottger EC, Sander P (2011) Relief from Zmp1-mediated arrest of phagosome maturation is associated with facilitated presentation and enhanced immunogenicity of mycobacterial antigens. Clin Vaccine Immunol 18:907–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann SH, Evans TG, Hanekom WA (2015) Tuberculosis vaccines: time for a global strategy. Sci Transl Med 7:276fs278

    Article  Google Scholar 

  • Kim KD, Lee HG, Kim JK, Park SN, Choe IS, Choe YK, Kim SJ, Lee E, Lim JS (1999) Enhanced antigen-presenting activity and tumour necrosis factor-alpha-independent activation of dendritic cells following treatment with Mycobacterium bovis bacillus Calmette-Guerin. Immunology 97:626–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matucci A, Maggi E, Vultaggio A (2014) Cellular and humoral immune responses during tuberculosis infection: useful knowledge in the era of biological agents. J Rheumatol Suppl 91:17–23

    Article  CAS  PubMed  Google Scholar 

  • Meng C, Xu Z, Chen X, Zeng K, Liu J, Shen Y, Pan Z, Jiao X (2016) Murine plasmacytoid dendritic cells participate in immune responses against BCG with weaker immunological effects than classic dendritic cells except for uptake of bacilli. BMC Vet Res, under review

  • Mihret A, Mamo G, Tafesse M, Hailu A, Parida S (2011) Dendritic cells activate and mature after infection with Mycobacterium tuberculosis. BMC Res Notes 4:247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naik SH, O’Keeffe M, Proietto A, Shortman HH, Wu L (2010) CD8+, CD8, and plasmacytoid dendritic cell generation in vitro using flt3 ligand. Methods Mol Biol 595:167–176

    Article  CAS  PubMed  Google Scholar 

  • Naik SH, Proietto AI, Wilson NS, Dakic A, Schnorrer P, Fuchsberger M, Lahoud MH, O’Keeffe M, Shao QX, Chen WF, Villadangos JA, Shortman K, Wu L (2005) Cutting edge: generation of splenic CD8+ and CD8 dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. J Immunol 174:6592–6597

    Article  CAS  PubMed  Google Scholar 

  • O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP (2013) The immune response in tuberculosis. Annu Rev Immunol 31:475–527

    Article  PubMed  Google Scholar 

  • Prendergast KA, Kirman JR (2013) Dendritic cell subsets in mycobacterial infection: control of bacterial growth and T cell responses. Tuberculosis (Edinb) 93:115–122

    Article  CAS  Google Scholar 

  • Proietto AI, Mittag D, Roberts AW, Sprigg N, Wu L (2012) The equivalents of human blood and spleen dendritic cell subtypes can be generated in vitro from human CD34(+) stem cells in the presence of Fms-like tyrosine kinase 3 ligand and thrombopoietin. Cell Mol Immunol 9:446–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapoznikov A, Fischer JA, Zaft T, Krauthgamer R, Dzionek A, Jung S (2007) Organ-dependent in vivo priming of naive CD4+, but not CD8+, T cells by plasmacytoid dendritic cells. J Exp Med 204:1923–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Fujita S (2007) Dendritic cells-nature and classification. Allergol Int 56:183–191

    Article  Google Scholar 

  • Segura E, Villadangos JA (2009) Antigen presentation by dendritic cells in vivo. Curr Opin Immunol 21:105–110

    Article  CAS  PubMed  Google Scholar 

  • Steinman RM (2001) Dendritic cells and the control of immunity: enhancing the efficiency of antigen presentation. Mt Sinai J Med 68:160–166

    CAS  PubMed  Google Scholar 

  • Suzuki S, Honma K, Matsuyama T, Suzuki K, Toriyama K, Akitoyo I, Yamamoto K, Suematsu T, Nakamura M, Yui K, Kumatori A (2004) Critical roles of interferon regulatory factor 4 in CD11bhighCD8α dendritic cell development. Proc Natl Acad Sci U S A 101:8981–8986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP (2008) Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther 117:244–279

    Article  CAS  PubMed  Google Scholar 

  • Winau F, Kaufmann SH, Schaible UE (2004) Apoptosis paves the detour path for CD8 T cell activation against intracellular bacteria. Cell Microbiol 6:599–607

    Article  CAS  PubMed  Google Scholar 

  • Wolf AJ, Linas B, Trevejo-Nunez GJ, Kincaid E, Tamura T, Takatsu K, Ernst JD (2007) Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol 179:2509–2519

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhan Y, Lew AM, Naik SH, Kershaw MH (2007) Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J Immunol 179:7577–7584

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Meng C, Qiang B, Gu H, Sun L, Yin Y, Pan Z, Chen X, Jiao X (2015) Differential effects of Mycobacterium bovis BCG on macrophages and dendritic cells from murine spleen. Int J Mol Sci 16:24127–24138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Li S, Luo Y, Chen Y, Cheng S, Zhang G, Hu C, Chen H, Guo A (2013) Mycobacterium bovis and BCG induce different patterns of cytokine and chemokine production in dendritic cells and differentiation patterns in CD4+ T cells. Microbiology 159:366–379

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research and Development Program of China (2012CB518805), the National Natural Science Foundation of China (31372414), the Research and Development Program of Jiangsu (BE2015343), and the Priority Academic Development Program of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Chen or Xinan Jiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, C., Wang, X., Xu, Z. et al. Murine Flt3 ligand-generated plasmacytoid and conventional dendritic cells display functional differentiation in activation, inflammation, and antigen presentation during BCG infection in vitro. In Vitro Cell.Dev.Biol.-Animal 53, 67–76 (2017). https://doi.org/10.1007/s11626-016-0076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-016-0076-3

Keywords

Navigation