Skip to main content
Log in

Americanin B protects cultured human keratinocytes against oxidative stress by exerting antioxidant effects

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

We evaluated the cytoprotective effects of americanin B, a lignan compound, against hydrogen peroxide (H2O2)-induced cell damage. Americanin B decreased the level of DPPH radicals, superoxide anions, hydroxyl radicals, and intracellular reactive oxygen species. Americanin B also attenuated DNA damage induced by H2O2 treatment, as shown by the inhibition of formation of comet tails, indicative of DNA strand breakage, and prevented the oxidation of protein and peroxidation of lipid, as determined by protein carbonyls and 8-isoprostane. Furthermore, americanin B protected against H2O2-induced apoptotic cell death, as determined by a reduction in the numbers of apoptotic bodies stained with Hoechst 33342. These findings suggest that americanin B protects cells against oxidative damage by exerting antioxidant effects and inhibiting apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Bandyopadhyay U, Das D, Banerjee RK (1999) Reactive oxygen species: oxidative damage and pathogenesis. Curr Sci 77:658–666

    CAS  Google Scholar 

  • Beauchamp MC, Letendre E, Renier G (2002) Macrophage lipoprotein lipase expression is increased in patients with heterozygous familial hypercholesterolemia. J Lipid Res 43:215–222

    PubMed  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset CLWT (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30

    Article  CAS  Google Scholar 

  • Cai YZ, Sun M, Xing J, Luo Q, Corke H (2006) Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci 78:2872–2888

    Article  PubMed  CAS  Google Scholar 

  • Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47:936–942

    PubMed  CAS  Google Scholar 

  • Cassidy A, Hanley B, Lamuela-Raventos RM (2000) Isoflavones, lignans and stilbenes—origins, metabolism and potential importance to human health. J Sci Food Agric 80:1044–1062

    Article  CAS  Google Scholar 

  • Chen JW, Zhu ZQ, Hu TX, Zhu DY (2002) Structure-activity relationship of natural flavonoids in hydroxyl radical-scavenging effects. Acta Pharmacol Sin 23:667–672

    PubMed  CAS  Google Scholar 

  • Cheng Z, Ren J, Li Y, Chang W, Chen Z (2003) Establishment of a quantitative structure-activity relationship model for evaluating and predicting the protective potentials of phenolic antioxidants on lipid peroxidation. J Pharm Sci 92:475–484

    Article  PubMed  CAS  Google Scholar 

  • Choi HR, Choi JS, Han YN, Bae SJ, Chung HY (2002) Peroxynitrite scavenging activity of herb extracts. Phytother Res 16:364–367

    Article  PubMed  CAS  Google Scholar 

  • Chung KT, Wong TY, Huang YW, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38:421–464

    Article  PubMed  CAS  Google Scholar 

  • Cunha WR, e Silva MLA, Sola RC, Veneziani SRA, Bastos JK (2012) Lignans: chemical and biological properties. In: Venketeshwer R (ed) Phytochemicals—a global perspective of their role in nutrition and health. In Tech, Rijeka, pp 213–234

    Google Scholar 

  • Dixon RA (2004) Phytoestrogens. Annu Rev Plant Biol 55:225–261

    Article  PubMed  CAS  Google Scholar 

  • Dmitriev LF, Titov VN (2010) Lipid peroxidation in relation to ageing and the role of endogenous aldehydes in diabetes and other age-related diseases. Ageing Res Rev 9:200–210

    Article  PubMed  CAS  Google Scholar 

  • Farombi EO, Shrotriya S, Na HK, Kim SH, Surh YJ (2008) Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem Toxicol 46:1279–1287

    Article  PubMed  CAS  Google Scholar 

  • Foti M, Ruberto G (2001) Kinetic solvent effects on phenolic antioxidants determined by spectroscopic measurements. J Agric Food Chem 49:342–348

    Article  PubMed  CAS  Google Scholar 

  • Haraguchi H, Ishikawa H, Shirataki N, Fukuda A (1997) Antiperoxidative activity of neolignans from Magnolia obovata. J Pharm Pharmacol 49:209–212

    Article  PubMed  CAS  Google Scholar 

  • Harper A, Kerr DJ, Gescher A, Chipman JK (1999) Antioxidant effects of isoflavonoids and lignans, and protection against DNA oxidation. Free Radic Res 31:149–160

    Article  PubMed  CAS  Google Scholar 

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584

    Article  PubMed  CAS  Google Scholar 

  • Hsu JY, Chu JJ, Chou MC, Chen YW (2013) Dioscorin pre-treatment protects A549 human airway eithelial cells from hydrogen peroxide-induced oxidative stress. Inflammation 2013:1–7

    Google Scholar 

  • Kang KA, Zhang R, Piao MJ, Chae SW, Kim HS, Park JH, Jung KS, Hyun JW (2012) Baicalein inhibits oxidative stress-induced cellular damage via antioxidant effects. Toxicol Ind Health 28:412–421

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Lee K, Kang KA, Lee NH, Hyun JW (2012) Phloroglucinol exerts protective effects against oxidative stress-induced cell damage in SH-SY5Y cells. J Pharmacol Sci 119:186–192

    Article  PubMed  CAS  Google Scholar 

  • Kim KH, Choi JW, Ha SK, Kim SY, Lee KR (2010) Neolignans from Piper kadsura and their anti-neuroinflammatory activity. Bioorg Med Chem Lett 20:409–412

    Article  PubMed  CAS  Google Scholar 

  • Kohno M, Mizuta Y, Kusai M, Masumizu T, Makino K (1994) Measurements of superoxide anion radical and superoxide anion scavenging activity by electron spin resonancespectroscopy coupled with DMPO spin trapping. Bull Chem Soc Jpn 67:1085–1090

    Article  CAS  Google Scholar 

  • Lee DY, Lee DG, Cho JG, Bang MH, Lyu HN, Lee YH, Kim SY, Baek NI (2009) Lignans from the fruits of the red pepper (Capsicum annuum L.) and their antioxidant effects. Arch Pharm Res 32:1345–1349

    Article  PubMed  CAS  Google Scholar 

  • Lee DY, Seo KH, Jeong RH, Lee SM, Kim GS, Noh HJ, Kim GW, Kim JY, Baek NI (2012) Anti-inflammatory lignans from the fuits of Acanthopanax sessiliflorus. Molecules 18:41–49

    Article  PubMed  CAS  Google Scholar 

  • Lee KM, Yun CH (2012) Potential in vitro protective effect of quercetin, catechin, caffeic acid and phytic acid against ethanol-induced oxidative stress in SK-Hep-1 cells. Biomol Ther 20:492–498

    Article  CAS  Google Scholar 

  • Lee WS, Baek YI, Kim JR, Cho KH, Sok DE, Jeong TS (2004) Antioxidant activities of a new lignan and a neolignan from Saururus chinensis. Bioorg Med Chem Lett 14:5623–5628

    Article  PubMed  CAS  Google Scholar 

  • Li L, Abe Y, Kanagawa K, Usui N, Imai K, Mashino T, Mochizuki M, Miyata N (2004) Distinguishing the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-OH radical quenching effect from the hydroxyl radical scavenging effect in the ESR spin-trapping method. Anal Chim Acta 512:121–124

    Article  CAS  Google Scholar 

  • Li L, Abe Y, Mashino T, Mochizuki M, Miyata N (2003) Signal enhancement in ESR spin-trapping for hydroxyl radicals. Anal Sci 19:1083–1084

    Article  PubMed  CAS  Google Scholar 

  • Lien EJ, Ren S, Bui HH, Wang R (1998) Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radic Biol Med 26:285–294

    Article  Google Scholar 

  • Maroto R, Perez-Polo JR (1997) BCL-2-related protein expression in apoptosis: oxidative stress versus serum deprivation in PC12 cells. J Neurochem 69:514–523

    Article  PubMed  CAS  Google Scholar 

  • Mei RQ, Wang YH, Du GH, Liu GM, Zhang L, Cheng YX (2009) Antioxidant lignans from the fruits of Broussonetia papyrifera. J Nat Prod 72:621–625

    Article  PubMed  CAS  Google Scholar 

  • Melidou M, Riganakos K, Galaris D (2005) Protection against nuclear DNA damage offered by flavonoids in cells exposed to hydrogen peroxide: the role of iron chelation. Free Radic Biol Med 39:1591–1600

    Article  PubMed  CAS  Google Scholar 

  • Mena S, Ortega A, Estrela JM (2009) Oxidative stress in environmental-induced carcinogenesis. Mutat Res 674:36–44

    Article  PubMed  CAS  Google Scholar 

  • Moss GP (2000) Nomenclature of lignans and neolignans (IUPAC Recommendations 2000). Pure Appl Chem 72:1493–1523

    Article  CAS  Google Scholar 

  • Nguyen CN, Kim HE, Lee SG (2013) Caffeoylserotonin protects human keratinocyte HaCaT cells against H2O2-induced oxidative stress and apoptosis through upregulation of HO-1 expression via activation of the PI3K/Akt/Nrf2 pathway. Phytother Res 17:1810–1818

    Article  Google Scholar 

  • Noroozi M, Angerson WJ, Lean ME (1998) Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. Am J Clin Nutr 67:1210–1218

    PubMed  CAS  Google Scholar 

  • Okimoto Y, Watanabe A, Niki E, Yamashita T, Noguchi N (2000) A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett 474:137–140

    Article  CAS  Google Scholar 

  • Payá M, Halliwell B, Hoult JRS (1992) Interactions of a series of coumarins with reactive oxygen species: scavenging of superoxide, hypochlorous acid and hydroxyl radicals. Biochem Pharmacol 44:205–214

    Article  PubMed  Google Scholar 

  • Pirinccioglu AG, Gökalp D, Pirinccioglu M, Kizil G, Kizil M (2010) Malondialdehyde (MDA) and protein carbonyl (PCO) levels as biomarkers of oxidative stress in subjects with familial hypercholesterolemia. Clin Biochem 43:1220–1224

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan R, Ranjan S, Nair CK (2003) Effect of vinblastine sulfate on gamma-radiation-induced DNA single-strand breaks in murine tissues. Mutat Res 536:15–25

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz AR, Schmaldienst S, Stuhlmeier KM, Chen W, Knapp W, Zlabinger GJ (1992) A microplate assay for the detection of oxidative products using 2′,7′-dichlorofluorescin-diacetate. J Immunol Methods 156:39–45

    Article  PubMed  CAS  Google Scholar 

  • Schühly W, Khan SI, Fischer NH (2009) Neolignans from North American Magnolia species with cyclooxygenase 2 inhibitory activity. Inflammopharmacology 17:106–110

    Article  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037

  • Singh NP (2000) Microgels for estimation of DNA strand breaks. DNA protein crosslinks and apoptosis. Mutat Res 455:111–127

    Article  PubMed  CAS  Google Scholar 

  • Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87:1157–1180

    Article  PubMed  CAS  Google Scholar 

  • Tapiero H, Tew KD, Ba N, Mathé G (2002) Polyphenols: do they play a role in the prevention of human pathologies? Biomed Pharmacother 56:200–207

    Article  PubMed  CAS  Google Scholar 

  • Terashvili M, Sarkar P, Nostrand MV, Falck JR, Harder DR (2012) The protective effect of astrocyte-derived 14,15-epoxyeicosatrienoic acid on hydrogen peroxide-induced cell injury in astrocyte-dopaminergic neuronal cell line co-culture. Neuroscience 223:68–76

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tezel G (2006) Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 25:490–513

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tyrakowska B, Soffers AEMF, Szymusiak H, Boeren S, Boersma MG, Lemanska K, Vervoort J, Rietjens IMCM (1999) TEAC antioxidant activity of 4-hydroxybenzoates. Free Radic Biol Med 27:1427–1436

    Article  PubMed  CAS  Google Scholar 

  • Ueno I, Kohno M, Yoshihira K, Hirono I (1984) Quantitative determination of the superoxide radicals in the xanthine oxidase reaction by measurement of the electron spin resonance signal of the superoxide radical spin adduct of 5,5-dimethyl-1-pyrroline-1-oxide. J Pharmacobio-dyn 7:563–569

    Article  PubMed  CAS  Google Scholar 

  • Valentão P, Fernandes E, Carvalho F, Andrade PB, Seabra RM, Bastos ML (2002) Antioxidative properties of cardoon (Cynara cardunculus L.) infusion against superoxide radical, hydroxyl radical and hypochlorous acid. J Agric Food Chem 50:4989–4993

    Article  PubMed  Google Scholar 

  • Valentão P, Fernandes E, Carvalho F, Andrade PB, Seabra RM, Bastos ML (2003) Hydroxyl radical and hypochlorous acid scavenging activity of small centaury (Centaurium erythraea) infusion. A comparative study with green tea (Camellia sinensis). Phytomedicine 10:517–522

    Article  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  • Wang LY, Unehara N, Kitanaka S (2005) Lignans from the roots of Wikstroemia indica and their DPPH radical scavenging and nitric oxide inhibitory activities. Chem Pharm Bull 53:1348–1351

    Article  PubMed  CAS  Google Scholar 

  • Yang CS, Landau JM, Huang MT, Newmark HL (2001) Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr 21:381–406

    Article  PubMed  CAS  Google Scholar 

  • Yu JG, Li TM, Sun L, Luo XZ, Ding W, Li DY (2001) Studies on chemical constituents of the seeds from Atrabotrys hexapetalus (Annonaceae). Acta Pharmaceutical Sin 36:281–286

    CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Ministry of Trade, Industry and Energy (MOTIE) and the Korea Institute for Advancement of Technology (KIAT) through the Promoting Regional Specialized Industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Won Hyun.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Piao, M.J., Kim, K.C. et al. Americanin B protects cultured human keratinocytes against oxidative stress by exerting antioxidant effects. In Vitro Cell.Dev.Biol.-Animal 50, 766–777 (2014). https://doi.org/10.1007/s11626-014-9759-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9759-9

Keywords

Navigation