Skip to main content
Log in

Comparison of some antioxidant properties of plant extracts from Origanum vulgare, Salvia officinalis, Eleutherococcus senticosus and Stevia rebaudiana

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Phenolic compounds from plants are known for their antioxidant properties and have been proposed as therapeutic agents to counteract oxidative stress. However, under normal circumstances, the body only receives a very small amount of these substances in the diet. We have investigated the effect of extracts from known and frequently used plants as part of diet, food seasoning, medicinal tea, and sweetener at different concentrations on the ability to scavenge free radicals, to affect antioxidant enzymes, and finally in the survival of cancer cell lines. We found extract concentrations of about 100 μg.ml−1 more indicative in the assessment of all parameters investigated. Ginseng possessed a very good ability to scavenge superoxide and hydroxyl radicals, while stevia also manifested significant effects against hydroxyl radicals. Both extracts also showed NO decomposition ability. The antioxidant defense system against the excessive production of radicals in mitochondria was sufficient. In contrast, the range of operating concentrations for sage and oregano mainly presented no significant effects against reactive oxygen and nitrogen species. Taken together with the significantly reduced activity of glutathione peroxidase, this led to the depletion of glutathione. The demonstrated modulation of redox state capability was sufficient to affect the viability of all tested cancer cell lines, but especially A-549, CEM and HeLa by oregano extract. Results support the promising role of the tested extracts as a source of compounds for further in vivo studies with the ability to powerfully interfere with or modify the redox state of cells according to the type of disease, which is expected to be associated with oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Antunes F, Cadenas E (2000) Estimation of H2O2 gradients across biomembranes. FEBS Lett 475:121–126

    Article  CAS  PubMed  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475

    Article  CAS  PubMed  Google Scholar 

  • Bandonienė D, Venskutonis PR, Gruzdienė D, Murkovic M (2002) Antioxidative activity of sage (Salvia officinalis L.), savory (Satureja hortensis L.) and borage (Borago officinalis L.) extracts in rapeseed oil. Eur J Lipid Sci Tech 104:286–292

    Article  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta 1758:994–1003

    Article  CAS  PubMed  Google Scholar 

  • Boon H, Smith M (1999) The botanical pharmacy. Quarry Press, Ontario Kingston

    Google Scholar 

  • Cadenas E, Davies KJA (2000) Mitochondrial free radical generation, oxidative stress, and ageing. Free Rad Biol Med 29:222–230

    Article  CAS  PubMed  Google Scholar 

  • Calberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–485

    Article  Google Scholar 

  • Cochemé HM, Murphy MP (2008) Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem 283:1786–1798

    Article  PubMed  Google Scholar 

  • Davydov M, Krikorian AD (2000) Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae) as an adaptogen: a close look. J Ethnopharmacol 72:345–393

    Article  CAS  PubMed  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Vizarra E, Ferrín G, Pérez-Martos A, Fernández-Silva P, Zeviani M, Enríquez JA (2010) Isolation of mitochondria for biogenetical studies: an update. Mitochondrion 10:253–262

    Article  PubMed  Google Scholar 

  • Flohe L, Gunzler WA (1984) Assay of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  CAS  PubMed  Google Scholar 

  • Floreani M, Petrone P, Debetto P, Palatini P (1997) A comparison between different methods for the determination of reduced and oxidized glutathione in mammalian tissues. Free Radic Res 26:449–455

    Article  CAS  PubMed  Google Scholar 

  • Ford PC, Lorkovic IM (2002) Mechanistic aspects of the reactions of nitric oxide with transition-metal complexes. Chem Rev 102:993–1018

    Article  CAS  PubMed  Google Scholar 

  • Gruenwald J, Brendler T, Jaenicke C (2000) PDR for Herbal Medicines, 3rd edn. Medical Economic Co Inc., Monvale

    Google Scholar 

  • Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401:1–11

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM, Aruoma OI (1987) The deoxyribose method: a simple “test tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165:215–219

    Article  CAS  PubMed  Google Scholar 

  • Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent aanion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563

    Article  CAS  PubMed  Google Scholar 

  • Hurd TR, Filipovska A, Costa NJ, Dahm CC, Murphy MP (2005) Disulphide formation on mitochondrial protein thiols. Biochem Soc Trans 33:1390–1393

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Sato EF, Nishikawa M, Park AM, Kira Y, Imada I, Utsumi K (2003) Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem 10:2495–2505

    Article  CAS  PubMed  Google Scholar 

  • Kim KM, Kim PK, Kwon YG, Bai SK, Nam WD, Kim YM (2002) Regulation of apoptosis by nitrosative stress. J Biochem Mol Biol 35:127–133

    Article  CAS  PubMed  Google Scholar 

  • Kitano H (2004) Cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer 4:227–235

    Article  CAS  PubMed  Google Scholar 

  • Li X (2013) Solvent effects and improvements in the deoxyribose degradation assay for hydroxyl radical-scavenging. Food Chem 141:2083–2088

    Article  CAS  PubMed  Google Scholar 

  • Li WL, Zheng HC, Bukuru J, De Kimpe N (2004) Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ehnopharmacol 92:1–21

    Article  CAS  Google Scholar 

  • Mattson MP (2008) Hormesis defined. Ageing Res Rev 7:1–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mattson MP, Cheng A (2006) Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci 29:632–639

    Article  CAS  PubMed  Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2001) A rapid simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quiroga PR, Grosso NR, Lante A, Lomolino G, Zygadlo JA, Nepote V (2013) Chemical composition, antioxidant activity and anti-lipase activity of Origanum vulgare and Lippia turbinata essential oils. Int J Food Sci Tech 48:642–649

    Article  CAS  Google Scholar 

  • Riccioni G, Bucciarelli T, Mancini B, Di Ilio C, Capra V, D’Orazio N (2007) The role of the antioxidant vitamin supplementation in the prevention of cardiovascular diseases. Expert Opin Investig Drugs 16:25–32

    Article  CAS  PubMed  Google Scholar 

  • Ridnour LA, Thomas DD, Mancardi D, Espey MG, Miranda KM, Paolocci N, Feelisch M, Fukuto J, Wink DA (2004) The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol Chem 385:1–10

    Article  CAS  PubMed  Google Scholar 

  • Rios JL, Recio MC, Villar A (1988) Screening methods for natural products with antimicrobial activity: a review of the literature. J Ethnopharmacol 23:127–149

    Article  CAS  PubMed  Google Scholar 

  • Schafer FR, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulphide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  CAS  PubMed  Google Scholar 

  • Schhultz V, Hansel R, Tyler V (1998) Rational phytotherapy: a physicianʼs guide to herbal medicine. Springer, New York

    Book  Google Scholar 

  • Silva MP, Martinez MJ, Casini C, Grosso NR (2010) Tocopherol content, peroxide value and sensory attributes in roasted peanuts during storage. Int J Food Sci Tech 45:1499–1504

    Article  CAS  Google Scholar 

  • Soobrattee MA, Bahorun T, Aruoma OI (2006) Chemopreventive actions of plyphenolic compounds in cancer. Biofactors 27:19–35

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D (2007) Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in th L-arginine/nitric oxide area of research. J Chromatography B 851:51–70

    Article  CAS  Google Scholar 

  • Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  • Wake G, Court J, Pickering A, Lewis R, Wilkins R, Perry E (2000) CNS acetylcholine receptor activity in European medicinal plants traditionally used to improve failing memory. J Ethnopharmacol 69:105–114

    Article  CAS  PubMed  Google Scholar 

  • Whiteman M, Halliwell B (1996) Protection against peroxynitrite-dependent tyrosine nitration and alpha 1-antiproteinase inactivation by ascorbic acid: a comparison with other biological antioxidants. Free Radic Res 25:275–283

    Article  CAS  PubMed  Google Scholar 

  • Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25:434–456

    Article  CAS  PubMed  Google Scholar 

  • Wink DA, Nims RW, Darbyshire JF, Christodoulou D, Hanbauer I, Cox GW, Laval F, Laval J, Cook JA, Krishna MC, DeGraff W, Mitchell JB (1994) Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem Res Toxicol 7:519–525

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Noyan Ashraf MH, Facci M, Wang R, Paterson PG, Ferrie A, Juurlink BH (2004) Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proc Natl Acad Sci U S A 101:7094–7099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Slovak Grant Agency for Science VEGA no. 1/1236/12, VEGA no. 1/0751/12, and partially supported by the Agency of the Slovak Ministry of Education for the Structural Funds of the EU, under project ITMS: 26220220104 (10%), ITMS: 26220120058 (10%) and ITMS: 26220220152 (10%).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janka Vašková.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaško, L., Vašková, J., Fejerčáková, A. et al. Comparison of some antioxidant properties of plant extracts from Origanum vulgare, Salvia officinalis, Eleutherococcus senticosus and Stevia rebaudiana . In Vitro Cell.Dev.Biol.-Animal 50, 614–622 (2014). https://doi.org/10.1007/s11626-014-9751-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9751-4

Keywords

Navigation