Skip to main content
Log in

Immunophenotypic characterization and tenogenic differentiation of mesenchymal stromal cells isolated from equine umbilical cord blood

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) isolated from umbilical cord blood (UCB) in equines have not been well characterized with respect to the expression of pluripotency and mesenchymal markers and for tenogenic differentiation potential in vitro. The plastic adherent fibroblast-like cells isolated from 13 out of 20 UCB samples could proliferate till passage 20. The cells expressed pluripotency markers (OCT4, NANOG, and SOX2) and MSC surface markers (CD90, CD73, and CD105) by RT-PCR, but did not express CD34, CD45, and CD14. On immunocytochemistry, the isolated cells showed expression of CD90 and CD73 proteins, but tested negative for CD34 and CD45. In flow cytometry, CD29, CD44, CD73, and CD90 were expressed by 96.36  ± 1.28%, 93.40  ± 0.70%, 73.23  ± 1.29% and 46.75  ± 3.95% cells, respectively. The UCB-MSCs could be differentiated to tenocytes by culturing in growth medium supplemented with 50 ng/ml of BMP-12 by day 10. The differentiated cells showed the expression of mohawk homeobox (Mkx), collagen type I alpha 1 (Col1α1), scleraxis (Scx), tenomodulin (Tnmd) and decorin (Dcn) by RT-PCR. In addition, flow cytometry detected tenomodulin and decorin protein in 95.65 ± 2.15% and 96.30 ± 1.00% of differentiated cells in comparison to 11.30 ± 0.10% and 19.45 ± 0.55% cells, respectively in undifferentiated control cells. The findings support the observation that these cells may be suitable for therapeutic applications, including ruptured tendons in racehorses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Avilion A. A.; Nicolis S. K.; Pevny L. H.; Perez L.; Vivian N.; Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17: 126–140; 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borjesson D. L.; Peroni J. F. The regenerative medicine laboratory: facilitating stem cell therapy for equine disease. Clin. Lab. Med. 31: 109–123; 2011.

    Article  PubMed  Google Scholar 

  • Braun J.; Hack A.; WeisKlemm M.; Conrad S.; Treml S.; Kohler K.; Walliser U.; Skutella T.; Aicher W. K. Evaluation of the osteogenic and chondrogenic differentiation of capacities of equine adipose tissue derived mesenchymal stem cells. Am. J. Vet. Res. 71: 1228–1236; 2010.

    Article  PubMed  Google Scholar 

  • Brehm W.; Burk J.; Delling U.; Gittel C. Ribitsch I Stem cell-based tissue engineering in veterinary orthopaedics. Cell Tissue Res. 347: 677–688; 2012.

    Article  Google Scholar 

  • Burk J.; Ribitsch I.; Gittel C.; Juelke H.; Kasper C.; Staszyk C.; Brehm W. Growth and differentiation characteristics of equine mesenchymal stromal cells derived from different sources. Vet. J. 195: 98–106; 2013.

    Article  CAS  PubMed  Google Scholar 

  • Carrade D. D.; Affolter V. K.; Outerbridge C. A.; Walson J. L.; Galuppo L. D.; Buerchler S.; Kumar V.; Walker N. J.; Borjesson D. L. Intradermal injections of equine allogeneic umbilical cord-derived mesenchymal stem cells are well tolerated and do not elicit immediate or delayed hypersensitivity reactions. Cytotherapy 13: 1180–1192; 2011a.

    Article  PubMed  Google Scholar 

  • Carrade D. D.; Owens S. D.; Galuppo L. D.; Vidal M. A.; Ferraro G. L.; Librach F.; Buerchler S.; Friedman M. S.; Walker N. J.; Borjesson D. L. Clinicopathologic findings following intra-articular injection of autologous and allogeneic placentally derived equine mesenchymal stem cells in horses. Cytotherapy 13: 419–430; 2011b.

    Google Scholar 

  • Chambers I.; Colby D.; Robertson M.; Nichols J.; Lee S.; Tweedie S.; Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113: 643–655; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Cremonesi F.; Corradetti B.; Lange-Consiglio A. Fetal adnexa derived stem cells from domestic animal: progress and perspectives. Theriogenology 75: 1400–1415; 2011.

    Article  CAS  PubMed  Google Scholar 

  • de Mattos Carvalho A.; Alves A. L.; Golim M. A.; Moroz A.; Hussni C. A.; de Oliveira P. G.; Deffune E. Isolation and immunophenotypic characterization of mesenchymal stem cells derived from equine species adipose tissue. Vet. Immunol. Immunopathol. 132: 303–306; 2009.

    Article  PubMed  Google Scholar 

  • De Schauwer C.; Meyer E.; Cornillie P.; De Vliegher S.; van de Walle G. R.; Hoogewijs M.; Declercq H.; Govaere J.; Demeyere K.; Cornelissen M.; Van Soom A. Optimization of the isolation culture and characterization of equine umbilical cord blood mesenchymal stromal cells. Tissue Eng. C Methods 17: 1061–1070; 2011.

    Article  Google Scholar 

  • De Schauwer C.; Piepers S.; Van de Walle G. R.; Demeyere K.; Hoogewijs M. K.; Govaere J. L. J.; Braeckmans K.; VanSoom A.; Meyer E. In search for cross-reactivity to immunophenotype equine mesenchymal stromal cells by multicolor flow cytometry. Cytometry A 81: 312–323; 2012.

    Article  PubMed  Google Scholar 

  • Dhar M.; Neilse N.; Beatty K.; Eake S.; Adair H.; Geiser G. Equine peripheral blood derived mesenchymal stem cells: isolation, identification, trilineage differentiation and effect of hyperbaric oxygen treatment. Equine Vet. J. 44: 600–605; 2012.

    Article  CAS  PubMed  Google Scholar 

  • Docheva D.; Hunzike E. B.; Fassler R.; Brandau O. Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol. Cell. Biol. 25: 699–705; 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dominici M.; Le Blanc K.; Mueller I. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 8: 315–317; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Godwin E. E.; Young N. J.; Dudhia J.; Beamish I. C.; Smith R. K. W. Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Vet. J. 44: 25–32; 2011.

    Article  PubMed  Google Scholar 

  • Hoynowski S. M.; Fry M. M.; Gardner B. M.; Leming M. T.; Tucker J. R.; Black L.; Sand T.; Mitchell K. E. Characterization and differentiation of equine umbilical cord-derived matrix cells. Biochem. Biophys. Res. Commun. 362: 347–53; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Iacono E.; Brunori L.; Pirrone A.; Pagliaro P. P.; Ricci F.; Tazzari T. L.; Merlo B. Isolation characterization and differentiation of mesenchymal stem cells from amniotic fluid umbilical cord blood and Wharton’s jelly in the horse. Reproduction 143: 455–468; 2012.

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim S.; Saunders K.; Kydd J. H.; Lunn D. P.; Steinbach F. Screening of anti-human leukocyte monoclonal antibodies for reactivity with equine leukocytes. Vet. Immunol. Immunopathol. 119: 63–80; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Ito Y.; Toriuchi N.; Yoshitaka T.; Ueno-Kudoh H.; Sato T.; Yokoyama S.; Nishida K.; Akimoto T.; Takahashi M.; Miyaki S.; Asahara H. The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proc. Natl. Acad. Sci. U. S. A. 107: 10538–42; 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kakinuma S.; Tanaka Y.; Chinzei R.; Watanabe M.; Shimizu-Saito K.; Hara Y.; Teramoto K.; Arii S.; Sato C.; Takase K.; Yasumizu T.; Teraoka H. Human umbilical cord blood as a source of transplantable hepatic progenitor cells. Stem Cells 21: 217–227; 2003.

    Article  PubMed  Google Scholar 

  • Koch T. G.; Berg L. C.; Betts D. H. Current and future regenerative medicine-principles concepts and therapeutic use of stem cell therapy and tissue engineering in equine medicine. Can. Vet. J. 50: 155–165; 2009.

    PubMed Central  PubMed  Google Scholar 

  • Koch T. G.; Heerkens T.; Thomsen P. D.; Betts D. H. Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnol. 7: 26; 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lange-Consiglio A.; Corradetti B.; Bizzaro D.; Magatti M.; Ressel L.; Tassan S.; Parolini O.; Cremonesi F. Characterization and potential applications of progenitor-like cells isolated from horse amniotic membrane. J. Tissue Eng. Regen. Med. 6: 622–635; 2012.

    Article  CAS  PubMed  Google Scholar 

  • Lee J. Y.; Zhou Z.; Taub P. J.; Ramcharan M.; Li Y.; Akinbiyi T.; Mahram E. R.; Leong D. J.; Laudier D. M.; Ruike T.; Torinaz P. J.; Zaidi M.; Majeska R. J.; Schaffler M. B.; Flatow E. L.; Sun H. B. BMP-12 Treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo. Plos One 6(3): e17531; 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lejard V.; Brideau G.; Blais F.; Salingcarnboriboon R.; Wagner G.; Roehrl M. H.; Noda M.; Duprez D.; Houillier P.; Rossert J. Scleraxis and NFATc regulate the expression of the pro-alpha1(I) collagen gene in tendon fibroblasts. J. Biol. Chem. 282: 17665–17675; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Lovati A. B.; Corradetti B.; Lange C. A.; Recordati C.; Bonacina E.; Bizzaro D.; Cremonesi F. Comparison of equine bone marrow-umbilical cord matrix and amniotic fluid-derived progenitor cells. Vet. Res. Commun. 35: 103–121; 2011.

    Article  PubMed  Google Scholar 

  • Moretti P.; Hatlapatka T.; Marten D.; Lavrentieva A.; Majore I.; Hass R.; Kasper C. Mesenchymal stromal cells derived from human umbilical cord tissues: primitive cells with potential for clinical and tissue engineering applications. Adv. Biochem. Eng. Biotechnol. 123: 29–54; 2010.

    CAS  PubMed  Google Scholar 

  • Niwa H.; Miyazaki J.; Smith A. G. Quantitative expression of Oct-3/4 defines differentiation dedifferentiation or self-renewal of ES cells. Nat. Genet. 24: 372–376; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Raabe O.; Shell K.; Fietz D.; Freitag C.; Ohrndorf A.; Christ H. J.; Wenisch S.; Arnhold S. Tenogenic differentiation of equine adipose-tissue-derived stem cells under the influence of tensile strain growth differentiation factors and various oxygen tensions. Cell Tissue Res. 352: 509–521; 2013.

    Article  CAS  PubMed  Google Scholar 

  • Radcliffe C. H.; Flaminio M. J.; Fortier L. A. Temporal analysis of equine bone marrow aspirate during establishment of putative mesenchymal progenitor cell populations. Stem Cells Dev. 19: 269–282; 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ranera B.; Lyahyai J.; Romeroa A.; Vázqueza J. F.; Remachaa A. R.; Bernalc M. L.; Zaragozaa P.; Rodellara C.; Martín-Burriela I. Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Vet. Immunol. Immunopathol. 144: 147–154; 2011.

    Article  CAS  PubMed  Google Scholar 

  • Reed S. A.; Johnson S. E. Equine umbilical cord blood contains a population of stem cells that express Oct4 and differentiate into mesodermal and endodermal cell types. J. Cell. Physiol. 215: 329–336; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Romanov Y. A.; Svintsitskaya V. A.; Smirnov V. N. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21: 105–110; 2003.

    Article  PubMed  Google Scholar 

  • Schuh E. M.; Friedman M. S.; Carrade D. D.; Heeke D.; Oyserman S. M.; Galuppo L. D.; Lara D. J.; Walker N. J.; Ferraro G. L.; Owens S. D.; Borjesson D. L. Identification of variables that optimize isolation and culture of multipotent mesenchymal stem cells from equine umbilical-cord blood. Am. J. Vet. Res. 70: 1526–1535; 2009.

    Article  PubMed  Google Scholar 

  • Schweitzer R.; Chyung J. H.; Murtaugh L. C.; Brent A. E.; Rosen V.; Olson E. N.; Lassar A.; Tabin C. J. Analysis of the tendon cell fate using Scleraxis a specific marker for tendons and ligaments. Development 128: 3855–3866; 2001.

    CAS  PubMed  Google Scholar 

  • Sibov T. T.; Severino P.; Marti L. C.; Pavon L. F.; Oliveira D. M.; Tobo P. R.; Campos A. H.; Paes A. T.; Amaro E.; Gamarra L. F.; Moreira-Filho C. A. Mesenchymal stem cells from umbilical cord blood: parameters for isolation, characterization and adipogenic differentiation. Cytotechnology 64: 511–521; 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sieber C.; Kopf J.; Hiepen C.; Knaus P. Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev. 20: 343–355; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Stenderup K.; Justesen J.; Clausen C.; Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33: 919–926; 2003.

    Article  PubMed  Google Scholar 

  • Tarnok A.; Ulrich H.; Bocsi J. Phenotypes of stem cells from diverse origin. Cytometry A 77: 6–10; 2010.

    Article  PubMed  Google Scholar 

  • Tsai C. C.; Hung S. C. Functional roles of pluripotency transcription factors in mesenchymal stem cells. Cell Cycle 11: 3711–3712; 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vidal M. A.; Kilroy G. E.; Lopez M. J.; Johnson J. R.; Moore R. M.; Gimble J. M. Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet. Surg. 36: 613–622; 2007.

    Article  PubMed  Google Scholar 

  • Vidal M. A.; Robinson S. O.; Lopez M. J.; Paulsen D. B.; Borkhsenious O.; Johnson J. R.; Moore R. M.; Gimble J. M. Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow. Vet. Surg. 37: 713–724; 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  • Violini S.; Ramelli P.; Pisani L. F.; Gorni C.; Mariani P. Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Cell Biol. 10: 29; 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Q. W.; Chen Z. L.; Piao Y. J. Mesenchymal stem cells differentiate into tenocytes by bone morphogenetic protein (BMP) 12 gene transfer. J Biosci. Bioeng. 100: 418–422; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Wolfman N. M.; Hattersley G.; Cox K.; Celeste A. J.; Nelson R. Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J. Clin. Invest. 100: 321–330; 1997.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang G.; Ezura Y.; Chervoneva I.; Robinson P. S.; Beason D. P.; Carine E. T.; Soslowsky L. S.; Iozzo R. V.; Birk D. E. Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J. Cell. Biochem. 98: 1436–1449; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L.; Chan C. Isolation and enrichment of rat mesenchymal stem cells (MSCs) and separation of single-colony derived MSCs. J. Vis. Exp. 22: 1852; 2010.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Remount Veterinary Services and Equine Breeding Stud, Hisar, Haryana, India for providing access for sampling. We thank NRCE, Hisar for infrastructure support. Financial support to Niharika from Indian Council of Agricultural Research (ICAR) and to Baldev R Gulati from Department of Biotechnology, Government of India is duly acknowledged. The assistance in flow cytometry by BD-FACS academy, New Delhi is duly acknowledged.

Conflict of interest

None of the authors of this paper has a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baldev R. Gulati.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohanty, N., Gulati, B.R., Kumar, R. et al. Immunophenotypic characterization and tenogenic differentiation of mesenchymal stromal cells isolated from equine umbilical cord blood. In Vitro Cell.Dev.Biol.-Animal 50, 538–548 (2014). https://doi.org/10.1007/s11626-013-9729-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9729-7

Keywords

Navigation