Skip to main content
Log in

Polarized neural stem cells derived from adult bone marrow stromal cells develop a rosette-like structure

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Bone marrow stromal cells (BMSCs) were reported to form floating aggregation of cells with expression of nestin, a marker for neural stem cells (NSCs). The purpose of this investigation is to evaluate the morphology and the molecular markers expressed by NSCs derived from these neurospheres. The BMSCs were isolated from Sprague Dawley rats and evaluated for osteogenesis, lipogenesis, and expression of fibronectin, CD90, CD106, CD31, and Oct4. The BMSCs were cultured with Dulbecco’s modified Eagle’s medium (DMEM)/F12 containing 15% fetal bovine serum, then with DMEM/F12 containing 2% B27, basic fibroblast growth factor, and epidermal growth factor. The cell aggregates or spheres were stained with acridine orange, which showed that the neurospheres comprised aggregated cells at either premitotic/postsynthetic (PS), postmitotic/presynthetic (PM) phases of cell cycle, or a mixture of both. The NSCs harvested from the neurospheres were polar with eccentric nucleus, and at either a PS or a PM cell cycle phases, some cells at the latter phase tended to form rosette-like structures. The cells were immunostained for molecular markers such as nestin, neurofilament 68 (NF68), NF160, and NF200 and glial fibrillary acidic protein (GFAP). Myelin basic protein (MBP), the pluripotency (Oct4, Nanog, and SOX2), and the differentiation genes (NeuroD1, Tubb4, and Musashi I) were also evaluated using reverse transcription polymerase chain reaction (RT-PCR). Nestin, NF68, NF160, NF200, GFAP, O4, and N-cadherin were expressed in the NSCs. The percentage of immunoreactive cells to nestin was significantly higher than that of the other neuronal markers. MBP was not expressed in BMSCs, neurospheres, and NSCs. The neurospheres were immunoreactive to GFAP. RT-PCR showed the expression of NeuroD1 and Musashi I. The pluripotency gene (SOX2) was expressed in NSCs. Oct4 and Nanog were expressed in BMSCs, while Oct4 and SOX2 were expressed in the neurosphere. This indicates that a pluripotency regularity network existed during the transdifferentiation of BMSCs into NSCs. Image processing of the neurospheres showed that the cells tended to form radial patterns. The conclusion of this study is that the NSCs generated from the BMSC-derived neurospheres have the morphology and the characteristics of neuroepithelial cells with tendency to forming rosette-like structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

Similar content being viewed by others

References

  • Abdanipour A.; Tiraihi T.; Delshad A. Trans-differentiation of the adipose tissue-derived stem cells into neuron-like cells expressing neurotrophins by selegiline. Iran Biomed J 15(4): 113–121; 2011a.

    PubMed  CAS  Google Scholar 

  • Abdanipour A.; Tiraihi T.; Mirnajafi-Zadeh J. Improvement of the pilocarpine epilepsy model in rat using bone marrow stromal cell therapy. Neurol Res 33(6): 625–632; 2011b.

    Article  PubMed  Google Scholar 

  • Alam S.; Sen A.; Behie L. A.; Kallos M. S. Cell cycle kinetics of expanding populations of neural stem and progenitor cells in vitro. Biotechnol Bioeng 88(3): 332–347; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Aman A.; Piotrowski T. Cell migration during morphogenesis. Dev Biol 341: 20–33; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Bajpai R.; Coppola G.; Kaul M.; Talantova M.; Cimadamore F.; Nilbratt M.; Geschwind D. H.; Lipton S. A.; Terskikh A. V. Molecular stages of rapid and uniform neutralization of human embryonic stem cells. Cell Death Differ 16(6): 807–825; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Banfalvi G. Overview of cell synchronization. Methods Mol Biol 761: 1–23; 2011.

    Article  PubMed  Google Scholar 

  • Barnabé G. F.; Schwindt T. T.; Calcagnotto M. E.; Motta F. L.; Martinez Jr. G.; de Oliveira A. C.; Keim L. M.; D’Almeida V.; Mendez-Otero R.; Mello L. E. Chemically-induced RAT mesenchymal stem cells adopt molecular properties of neuronal-like cells but do not have basic neuronal functional properties. PLoS One 4(4): e52; 2009.

    Article  Google Scholar 

  • Bazán E.; Alonso F. J.; Redondo C.; López-Toledano M. A.; Alfaro J. M.; Reimers D.; Herranz A. S.; Paíno C. L.; Serrano A. B.; Cobacho N.; Caso E.; Lobo M. V. In vitro and in vivo characterization of neural stem cells. Histol Histopathol 19(4): 1261–1752; 2004.

    PubMed  Google Scholar 

  • Becker P. S.; Nilsson S. K.; Li Z.; Berrios V. M.; Dooner M. S.; Cooper C. L.; Hsieh C. C.; Quesenberry P. J. Adhesion receptor expression by hematopoietic cell lines and murine progenitors: modulation by cytokines and cell cycle status. Exp Hematol 27(3): 533–541; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Bertrand N.; Castro D. S.; Guillemot F. Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3(7): 517–30; 2002.

    Google Scholar 

  • Bianchi M. M. Collective behavior in gene regulation: metabolic clocks and cross-talking. FEBS J 275(10): 2356–2363; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Binello E.; Qadeer Z. A.; Kothari H. P.; Emdad L.; Germano I. M. Stemness of the CT-2A immunocompetent mouse brain tumor model: characterization in vitro. J Cancer 3: 166–174; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Boyer L. A.; Lee T. I.; Cole M. F.; Johnstone S. E.; Levine S. S.; Zucker J. P.; Guenther M. G.; Kumar R. M.; Murray H. L.; Jenner R. G.; Gifford D. K.; Melton D. A.; Jaenisch R.; Young R. A. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122(6): 947–56; 2005.

    Google Scholar 

  • Chen Y.; Teng F. Y.; Tang B. L. Coaxing bone marrow stromal mesenchymal stem cells towards neuronal differentiation: progress and uncertainties. Cell Mol Life Sci 63(14): 1649–1657; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Croft A. P.; Przyborski S. A. Generation of neuroprogenitor-like cells from adult mammalian bone marrow stromal cells in vitro. Stem Cells Dev 13(4): 409–420; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Cui G.; Qi Z.; Guo X.; Qin J.; Gui Y.; Cai Z. Rat bone marrow derived mesenchymal progenitor cells support mouse ES cell growth and germ-like cell differentiation. Cell Biol Int 33(3): 434–441; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Curchoe C. L.; Maurer J.; McKeown S. J.; Cattarossi G.; Cimadamore F.; Nilbratt M.; Snyder E. Y.; Bronner-Fraser M.; Terskikh A. V. Early acquisition of neural crest competence during hESCs neuralization. PLoS One 5(11): e13890; 2010.

    Article  PubMed  Google Scholar 

  • Daadi M. M.; Maag A. L.; Steinberg G. K. Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS One 3(2): e1644; 2008.

    Article  PubMed  Google Scholar 

  • Darzynkiewicz Z.; Traganos F.; Sharpless T.; Melamed M. R. Lymphocyte stimulation: a rapid multiparameter analysis. Proc Natl Acad Sci USA 73(8): 2881–2884; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Delcroix G. J.; Curtis K. M.; Schiller P. C.; Montero-Menei C. N. EGF and bFGF pre-treatment enhances neural specification and the response to neuronal commitment of MIAMI cells. Differentiation 80: 213–227; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Deng W.; Obrocka M.; Fischer I.; Prockop D. J. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun 282(1): 148–152; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Dezawa M.; Kanno H.; Hoshino M.; Cho H.; Matsumoto N.; Itokazu Y.; Tajima N.; Yamada H.; Sawada H.; Ishikawa H.; Mimura T.; Kitada M.; Suzuki Y.; Ide C. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113(12): 1701–1710; 2004.

    PubMed  CAS  Google Scholar 

  • Elkabetz Y.; Panagiotakos G.; Al Shamy G.; Socci N. D.; Tabar V.; Studer L. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22(2): 152–165; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Esposito M. T.; Di Noto R.; Mirabelli P.; Gorrese M.; Parisi S.; Montanaro D.; Del Vecchio L.; Pastore L. Culture conditions allow selection of different mesenchymal progenitors from adult mouse bone marrow. Tissue Eng Part A 15(9): 2525–2536; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Farkas L. M.; Huttner W. B. The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr Opin Cell Biol 20(6): 707–715; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Finley M. F.; Kulkarni N.; Huettner J. E. Synapse formation and establishment of neuronal polarity by P19 embryonic carcinoma cells and embryonic stem cells. J Neurosci 16(3): 1056–1065; 1996.

    PubMed  CAS  Google Scholar 

  • Franklin A.; Kao A.; Tapscott S.; Unis A. NeuroD homologue expression during cortical development in the human brain. J Child Neurol 16(11): 849–53; 2001.

    Google Scholar 

  • Fulton D.; Paez P. M.; Campagnoni A. T. The multiple roles of myelin protein genes during the development of the oligodendrocyte. ASN Neuro 2(1): e00027; 2010.

    Article  PubMed  Google Scholar 

  • Ge Y.; Zhou F.; Chen H.; Cui C.; Liu D.; Li Q.; Yang Z.; Wu G.; Sun S.; Gu J.; Wei Y.; Jiang J. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells. Biochem Biophys Res Commun 397(4): 711–717; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Ghorbanian M. T.; Tiraihi T.; Mesbah-Namin S. A.; Fathollahi Y. Selegiline is an efficient and potent inducer for bone marrow stromal cell differentiation into neuronal phenotype. Neurol Res 32(2): 185–193; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Gotz M.; Huttner W. B. The cell biology of neurogenesis. Mol Cell Biol 6: 777–788; 2005.

    Google Scholar 

  • Graham V.; Khudyakov J.; Ellis P.; Pevny L. SOX2 functions to maintain neural progenitor identity. Neuron 39(5): 749–765; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Hellmann M. A.; Panet H.; Barhum Y.; Melamed E.; Offen D. Increased survival and migration of engrafted mesenchymal bone marrow stem cells in 6-hydroxydopamine-lesioned rodents. Neurosci Lett 395(2): 124–128; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Hermann A.; Gastl R.; Liebau S.; Popa M. O.; Fiedler J.; Boehm B. O.; Maisel M.; Lerche H.; Schwarz J.; Brenner R.; Storch A. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117(Pt 19): 4411–4422; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Hung S. C.; Cheng H.; Pan C. Y.; Tsai M. J.; Kao L. S.; Ma H. L. In vitro differentiation of size-sieved stem cells into electrically active neural cells. Stem Cells 20(6): 522–529; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Kaka G. R.; Tiraihi T.; Delshad A.; Arabkheradmand J.; Kazemi H. In vitro differentiation of bone marrow stromal cells into oligodendrocyte-like cells using triiodothyronine as inducer. Int J Neurosci 122(5): 237–247; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko Y.; Sakakibara S.; Imai T.; Suzuki A.; Nakamura Y.; Sawamoto K.; Ogawa Y.; Toyama Y.; Miyata T.; Okano H. Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci 22(1–2): 139–153; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kerosuo L.; Piltti K.; Fox H.; Angers-Loustau A.; Häyry V.; Eilers M.; Sariola H.; Wartiovaara K. Myc increases self-renewal in neural progenitor cells through Miz-1. J Cell Sci 121(Pt 23): 3941–3950; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Keyoung H. M.; Roy N. S.; Benraiss A.; Louissaint Jr. A.; Suzuki A.; Hashimoto M.; Rashbaum W. K.; Okano H.; Goldman S. A. High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain. Nat Biotechnol 19(9): 843–850; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kim M. S.; Shin Y. N.; Cho M. H.; Kim S. H.; Kim S. K.; Cho Y. H.; Khang G.; Lee I. W.; Lee H. B. Adhesion behavior of human bone marrow stromal cells on differentially wettable polymer surfaces. Tissue Eng 13(8): 2095–2103; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Kim M. Y.; Kaduwal S.; Yang D. H.; Choi K. Y. Bone morphogenetic protein 4 stimulates attachment of neurospheres and astrogenesis of neural stem cells in neurospheres via phosphatidylinositol 3 kinase-mediated upregulation of N-cadherin. Neuroscience 170(1): 8–15; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Klein E. A.; Yung Y.; Castagnino P.; Kothapalli D.; Assoian R. K. Cell adhesion, cellular tension, and cell cycle control. Methods Enzymol 426: 155–175; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Kohyama J.; Abe H.; Shimazaki T.; Koizumi A.; Nakashima K.; Gojo S.; Taga T.; Okano H.; Hata J.; Umezawa A. Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 68(4–5): 235–244; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kumar G.; Co C. C.; Ho C. C. Steering cell migration using microarray amplification of natural directional persistence. Langmuir 27(7): 3803–3807; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Levy Y. S.; Merims D.; Panet H.; Barhum Y.; Melamed E.; Offen D. Induction of neuron-specific enolase promoter and neuronal markers in differentiated mouse bone marrow stromal cells. J Mol Neurosci 21(2): 121–132; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Li Y.; Chen J.; Wang L.; Lu M.; Chopp M. Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 56(12): 1666–1672; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Liu W.; Cui L.; Cao Y. Bone reconstruction with bone marrow stromal cells. Methods Enzymol 420: 362–80; 2006.

    Google Scholar 

  • Lobo M. V.; Alonso F. J.; Redondo C.; López-Toledano M. A.; Caso E.; Herranz A. S.; Paíno C. L.; Reimers D.; Bazán E. Cellular characterization of epidermal growth factor-expanded free-floating neurospheres. J Histochem Cytochem 51(1): 89–103; 2003.

    Article  PubMed  Google Scholar 

  • Loh Y. H.; Wu Q.; Chew J. L.; Vega V. B.; Zhang W.; Chen X.; Bourque G.; George J.; Leong B.; Liu J.; Wong K. Y.; Sung K. W.; Lee C. W.; Zhao X. D.; Chiu K. P.; Lipovich L.; Kuznetsov V. A.; Robson P.; Stanton L. W.; Wei C. L.; Ruan Y.; Lim B.; Ng H. H. The Oct 4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38(4): 431–40; 2006.

    Google Scholar 

  • Lu D.; Mahmood A.; Wang L.; Li Y.; Lu M.; Chopp M. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 12(3): 559–563; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Lu P.; Blesch A.; Tuszynski M. H. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res 77(2): 174–191; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lu P.; Jones L. L.; Snyder E. Y.; Tuszynski M. H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 181(2): 115–129; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ma W.; Liu Q. Y.; Maric D.; Sathanoori R.; Chang Y. H.; Barker J. L. Basic FGF-responsive telencephalic precursor cells express functional GABA(A) receptor/Cl-channels in vitro. J Neurobiol 35(3): 277–286; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Cerdeño V.; Lemen J. M.; Chan V.; Wey A.; Lin W.; Dent S. R.; Knoepfler P. S. N-Myc and GCN5 regulate significantly overlapping transcriptional programs inneural stem cells. PLoS One 7(6): e39456; 2012.

    Google Scholar 

  • Mekhail M.; Almazan G.; Tabrizian M. Oligodendrocyte-protection and remyelination post-spinal cord injuries: a review. Prog Neurobiol 96(3): 322–339; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Mohammad-Gharibani P.; Tiraihi T.; Mesbah-Namin S. A.; Arabkheradmand J.; Kazemi H. Induction of bone marrow stromal cells into GABAergic neuronal phenotype using creatine as inducer. Restor Neurol Neurosci 30(6): 511–525; 2012.

    PubMed  CAS  Google Scholar 

  • Mothe A. J.; Zahir T.; Santaguida C.; Cook D.; Tator C. H. Neural stem/progenitor cells from the adult human spinal cord are multipotent and self-renewing and differentiate after transplantation. PLoS One 6(11): e27079; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Movaghar B.; Tiraihi T.; Mesbah-Namin S. A. Transdifferentiation of bone marrow stromal cells into Schwann cell phenotype using progesterone as inducer. Brain Res 1208: 17–24; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Narayanan G.; Poonepalli A.; Chen J.; Sankaran S.; Hariharan S.; Yu Y. H.; Robson P.; Yang H.; Ahmed S. Single-cell mRNA profiling identifies progenitor subclasses in neurospheres. Stem Cells Dev 21(18): 3351–3362; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Neuhuber B.; Gallo G.; Howard L.; Kostura L.; Mackay A.; Fischer I. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 77(2): 192–204; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Nicolini C.; Belmont A.; Parodi S.; Lessin S.; Abraham S. Mass action and acridine orange staining: static and flow cytofluorometry. J Histochem Cytochem 27(1): 102–113; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Okumoto K.; Saito T.; Hattori E.; Ito J. I.; Suzuki A.; Misawa K.; Sanjyo M.; Takeda T.; Sugahara K.; Saito K.; Togashi H.; Kawata S. Expression of Notch signalling markers in bone marrow cells that differentiate into a liver cell lineage in a rat transplant model. Hepatol Res 31(1): 7–12; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Pankratz M. T.; Li X. J.; Lavaute T. M.; Lyons E. A.; Chen X.; Zhang S. C. Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells 25(6): 1511–1520; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Parte S.; Bhartiya D.; Telang J.; Daithankar V.; Salvi V.; Zaveri K.; Hinduja I. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev 20(8): 1451–1464; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Plane J. M.; Grossenbacher S. K.; Deng W. PARP-1 deletion promotes subventricular zone neural stem cells toward a glial fate. J Neurosci Res 90(8): 1489–1506; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Podgornyi O. V.; Poltavtseva R. A.; Marei M. V.; Sukhikh G. T.; Aleksandrova M. A. Formation of neuroepithelial structures in culture of neural stem cells from human brain. Bull Exp Biol Med 140(1): 113–117; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Qian D. X.; Zhang H. T.; Ma X.; Jiang X. D.; Xu R. X. Comparison of the efficiencies of three neural induction protocols in human adipose stromal cells. Neurochem Res 35(4): 572–579; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Rao V. S.; Carvalho A. C.; Trevisan M. T.; Andrade G. M.; Nobre-Júnior H. V.; Moraes M. O.; Magalhães H. I.; Morais T. C.; Santos F. A. Mangiferin ameliorates 6-hydroxydopamine-induced cytotoxicity and oxidative stress in ketamine model of schizophrenia. Pharmacol Rep 64(4): 848–856; 2012.

    PubMed  CAS  Google Scholar 

  • Ren H.; Cao Y.; Zhao Q.; Li J.; Zhou C.; Liao L.; Jia M.; Zhao Q.; Cai H.; Han Z. C.; Yang R.; Chen G.; Zhao R. C. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions. Biochem Biophys Res Commun 347(1): 12–21; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds B. A.; Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052): 1707–1710; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Riekstina U.; Cakstina I.; Parfejevs V.; Hoogduijn M.; Jankovskis G.; Muiznieks I.; Muceniece R.; Ancans J. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev 5(4): 378–386; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Roybon L.; Mastracci T. L.; Ribeiro D.; Sussel L.; Brundin P.; Li J. Y. GABAergic differentiation induced by Mash1 is compromised by the bHLH proteins Neurogenin2, NeuroD1, and NeuroD2. Cereb Cortex 20(5): 1234–1244; 2010.

    Article  PubMed  Google Scholar 

  • Sakakibara S.; Imai T.; Hamaguchi K.; Okabe M.; Aruga J.; Nakajima K.; Yasutomi D.; Nagata T.; Kurihara Y.; Uesugi S.; Miyata T.; Ogawa M.; Mikoshiba K.; Okano H. Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev Biol 176(2): 230–242; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ramos J.; Song S.; Cardozo-Pelaez F.; Hazzi C.; Stedeford T.; Willing A.; Freeman T. B.; Saporta S.; Janssen W.; Patel N.; Cooper D. R.; Sanberg P. R. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164(2): 247–256; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Singh R. P.; Shiue K.; Schomberg D.; Zhou F. C. Cellular epigenetic modifications of neural stem cell differentiation. Cell Transplant 18(10): 1197–1211; 2009.

    Article  PubMed  Google Scholar 

  • Sterneckert J.; Höing S.; Schöler H. R. Concise review: Oct4 and more: the reprogramming expressway. Stem Cells 30(1): 15–21; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Streckfuss-Bömeke K.; Vlasov A.; Hülsmann S.; Yin D.; Nayernia K.; Engel W.; Hasenfuss G.; Guan K. Generation of functional neurons and glia from multipotent adult mouse germ-line stem cells. Stem Cell Res 2(2): 139–154; 2009.

    Article  PubMed  Google Scholar 

  • Sun T.; Wang X. J.; Xie S. S.; Zhang D. L.; Wang X. P.; Li B. Q.; Ma W.; Xin H. A comparison of proliferative capacity and passaging potential between neural stem and progenitor cells in adherent and neurosphere cultures. Int J Dev Neurosci 29(7): 723–731; 2011.

    Article  PubMed  Google Scholar 

  • Sundberg M.; Andersson P. H.; Åkesson E.; Odeberg J.; Holmberg L.; Inzunza J.; Falci S.; Öhman J.; Suuronen R.; Skottman H.; Lehtimäki K.; Hovatta O.; Narkilahti S.; Sundström E. Markers of pluripotency and differentiation in human neural precursor cells derived from embryonic stem cells and CNS tissue. Cell Transplant 20(2): 177–191; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Suon S.; Jin H.; Donaldson A. E.; Caterson E. J.; Tuan R. S.; Deschennes G.; Marshall C.; Iacovitti L. Transient differentiation of adult human bone marrow cells into neuron-like cells in culture: development of morphological and biochemical traits is mediated by different molecular mechanisms. Stem Cells Dev 13(6): 625–635; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Techawattanawisal W.; Nakahama K.; Komaki M.; Abe M.; Takagi Y.; Morita I. Isolation of multipotent stem cells from adult rat periodontal ligament by neurosphere-forming culture system. Biochem Biophys Res Commun 357(4): 917–923; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Traganos F.; Darzynkiewicz Z.; Sharpless T.; Melamed M. R. Simultaneous staining of ribonucleic and deoxyribonucleic acids in unfixed cells using acridine orange in a flow cytofluorometric system. J Histochem Cytochem 25(1): 46–56; 1977.

    Google Scholar 

  • Uwanogho D.; Rex M.; Cartwright E. J.; Pearl G.; Healy C.; Scotting P. J.; Sharpe P. T. Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech Dev 49(1–2): 23–36; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Uzbekov R. E. Analysis of the cell cycle and a method employing synchronized cells for study of protein expression at various stages of the cell cycle. Biochemistry (Mosc) 69(5): 485–496; 2004.

    Article  CAS  Google Scholar 

  • Vadivelu R. K.; Yeap S. K.; Ali A. M.; Hamid M.; Alitheen N. B. Betulinic acid inhibits growth of cultured vascular smooth muscle cells in vitro by inducing g(1) arrest and apoptosis. Evid Based Complement Alternat Med 2012: 251362; 2012.

    Article  PubMed  Google Scholar 

  • Valcz G.; Krenács T.; Sipos F.; Leiszter K.; Tóth K.; Balogh Z.; Csizmadia A.; Muzes G.; Molnár B.; Tulassay Z. The role of the bone marrow derived mesenchymal stem cells in colonic epithelial regeneration. Pathol Oncol Res 17(1): 11–16; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Wakamatsu Y.; Nakamura N.; Lee J. A.; Cole G. J.; Osumi N. Transitin, a nestin-like intermediate filament protein, mediates cortical localization and the lateral transport of Numb in mitotic avian neuroepithelial cells. Development 134(13): 2425–2433; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Warthemann R.; Eildermann K.; Debowski K.; Behr R. False-positive antibody signals for the pluripotency factor OCT4A (POU5F1) in testis-derived cells may lead to erroneous data and misinterpretations. Mol Hum Reprod 18(12): 605–612; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Wilson P. G.; Stice S. S. Development and differentiation of neural rosettes derived from human embryonic stem cells. Stem Cell Rev 2(1): 67–77; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Woodbury D.; Schwarz E. J.; Prockop D. J.; Black I. B. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4): 364–370; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y. M.; Dang Y. H.; Qiu S.; Qi Y. P.; Xu Y. P.; Sai W. J. Differentiation and characteristics of the enhanced green fluorescent protein gene transgenic goat neural stem cells cultured in attached and non-attached plates. Cell Biol Int 35(8): 849–856; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Zuk P. A. The intracellular distribution of the ES cell totipotent markers OCT4 and Sox2 in adult stem cells differs dramatically according to commercial antibody used. J Cell Biochem 106(5): 867–877; 2009.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The project was funded by Shefa Neurosciences Research Center at Khatam Al-Anbia Hospital, Tehran, Iran (grant # 86-N-105). We are also grateful for the support of the Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. We are grateful for Mrs. Hanna A, Akbar for assistance in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taki Tiraihi.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darabi, S., Tiraihi, T., Ruintan, A. et al. Polarized neural stem cells derived from adult bone marrow stromal cells develop a rosette-like structure. In Vitro Cell.Dev.Biol.-Animal 49, 638–652 (2013). https://doi.org/10.1007/s11626-013-9628-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9628-y

Keywords

Navigation