Skip to main content

Advertisement

Log in

The efficiency of in vitro isolation and myogenic differentiation of MSCs derived from adipose connective tissue, bone marrow, and skeletal muscle tissue

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The objective of the study is to evaluate efficiency of in vitro isolation and myogenic differentiation of mesenchymal stem cells (MSCs) derived from adipose connective tissue (AD-MSCs), bone marrow (BM-MSCs), and skeletal muscle tissue (MC-MSCs). MSCs were isolated from adipose connective tissue, bone marrow, and skeletal muscle tissue of two adult 6-wk-old rats. Cultured MSCs were treated with 5-azacytidine (AZA) to induce myogenic differentiation. Isolated MSCs and differentiated cells were evaluated by immunocytochemistry (ICC), fluorescence-activated cell sorting (FACS), PCR, and RT-PCR. AD-MSCs showed the highest proliferation rate while BM-MSCs had the lowest one. In ICC, isolated MSCs had strong CD90- and CD44-positive expression and negative expression of CD45, CD31, and CD34, while AZA-treated MSCs had strong positive desmin expression. In FACS analysis, AD-MSCs had the highest percentage of CD90- and CD44-positive-expressing cells (99% and 96%) followed by BM-MSCs (97% and 94%) and MC-MSCs (92% and 91%).At 1 wk after incubation with AZA treatment, the peak of myogenin expression reached 93% in differentiated MC-MSCs, 83.3% in BM-MSCs, and 77% in AD-MSCs. MSCs isolated from adipose connective tissue, bone marrow, and skeletal muscle tissue have the same morphology and phenotype, but AD-MSCs were the most easily accessible and had the highest rate of growth on cultivation and the highest percentage of stem cell marker expression. Moreover, although MC-MSCs showed the highest rate of myogenic differentiation potential and expression of myoblast markers, AD-MSCs and BM-MSCs still can be valuable alternatives. The differentiated myoblastic cells could be an available new choice for myoblastic auto-transplantation in regeneration medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Adhim Z.; Matsuoka T.; Bito T.; Shigemura K.; Lee K. M.; Kawabata M.; Fujisawa M.; Nibu K.; Shirakawa T. In vitro and in vivo inhibitory effect of three Cox-2 inhibitors and epithelial-to-mesenchymal transition in human bladder cancer cell lines. Br. J. Cancer 105: 393–402; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Ahmed S. A.; Gogal Jr. R. M.; Walsh J. E. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J. Immunol. Methods 170: 211–224; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Asakura A.; Komaki M.; Rudnicki M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68: 245–253; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp J. R.; Heslop L.; Yu D. S.; Tajbakhsh S.; Kelly R. G.; Wernig A.; Buckingham M. E.; Partridge T. A.; Zammit P. S. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. The Journal of cell biology 151: 1221–1234; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Beier J. P.; Bitto F. F.; Lange C.; Klumpp D.; Arkudas A.; Bleiziffer O.; Boos A. M.; Horch R. E.; Kneser U. Myogenic differentiation of mesenchymal stem cells co-cultured with primary myoblasts. Cell biology international 35: 397–406; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Boonen K. J.; Post M. J. The muscle stem cell niche: regulation of satellite cells during regeneration. Tissue engineering 14: 419–431; 2008.

    Article  PubMed  Google Scholar 

  • Caplan A. I. Mesenchymal stem cells. J. Orthop. Res. 9: 641–650; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Carlson M. E.; Conboy I. M. Loss of stem cell regenerative capacity within aged niches. Aging cell 6: 371–382; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Cossu G.; Mavilio F. Myogenic stem cells for the therapy of primary myopathies: wishful thinking or therapeutic perspective? J. Clin. Invest. 105: 1669–1674; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Curzer H. The ethics of embryonic stem cell research. The Journal of medicine and philosophy 29: 533–562; 2004.

    Article  PubMed  Google Scholar 

  • De Bari C.; Dell’Accio F.; Luyten F. P. Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis and rheumatism 44: 85–95; 2001a.

    Article  PubMed  Google Scholar 

  • De Bari C.; Dell’Accio F.; Tylzanowski P.; Luyten F. P. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis and rheumatism 44: 1928–1942; 2001b.

    Article  PubMed  Google Scholar 

  • Dominici M.; Le Blanc K.; Mueller I.; Slaper-Cortenbach I.; Marini F.; Krause D.; Deans R.; Keating A.; Prockop D.; Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315–317; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Dreyfus P. A.; Chretien F.; Chazaud B.; Kirova Y.; Caramelle P.; Garcia L.; Butler-Browne G.; Gherardi R. K. Adult bone marrow-derived stem cells in muscle connective tissue and satellite cell niches. Am. J. Pathol. 164: 773–779; 2004.

    Article  PubMed  Google Scholar 

  • Drost A. C.; Weng S.; Feil G.; Schafer J.; Baumann S.; Kanz L.; Sievert K. D.; Stenzl A.; Mohle R. In vitro myogenic differentiation of human bone marrow-derived mesenchymal stem cells as a potential treatment for urethral sphincter muscle repair. Ann. N. Y. Acad. Sci. 1176: 135–143; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein A. J.; Petrakova K. V.; Kurolesova A. I.; Frolova G. P. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6: 230–247; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Fu Q.; Song X. F.; Liao G. L.; Deng C. L.; Cui L. Myoblasts differentiated from adipose-derived stem cells to treat stress urinary incontinence. Urology 75: 718–723; 2010.

    Article  PubMed  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287: 1433–8

    Google Scholar 

  • Gang E. J.; Jeong J. A.; Hong S. H.; Hwang S. H.; Kim S. W.; Yang I. H.; Ahn C.; Han H.; Kim H. Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem cells (Dayton, Ohio) 22: 617–624; 2004.

    Article  Google Scholar 

  • Gimble J. M. Adipose tissue-derived therapeutics. Expert. Opin. Biol. Ther. 3: 705–713; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Gimble J. M.; Katz A. J.; Bunnell B. A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 100: 1249–1260; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Hass R.; Kasper C.; Bohm S.; Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9: 12; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Kobe U (2011) Laws and Regulations of Animal experimentation at Kobe University: http://www.kobe-u.ac.jp/research/animal-experiments/laws-regulations.htm.

  • Lee R. H.; Kim B.; Choi I.; Kim H.; Choi H. S.; Suh K.; Bae Y. C.; Jung J. S. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell. Physiol. Biochem. 14: 311–324; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Liu Z. J.; Zhuge Y.; Velazquez O. C. Trafficking and differentiation of mesenchymal stem cells. J. Cell. Biochem. 106: 984–991; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Meirelles Lda S.; Nardi N. B. Methodology, biology and clinical applications of mesenchymal stem cells. Front. Biosci. 14: 4281–4298; 2009.

    Article  PubMed  Google Scholar 

  • Mizuno H. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. Journal of Nihon Medical School = Nihon Ika Daigaku zasshi 76: 56–66; 2009.

    Article  PubMed  Google Scholar 

  • Mollmann H.; Nef H. M.; Voss S.; Troidl C.; Willmer M.; Szardien S.; Rolf A.; Klement M.; Voswinckel R.; Kostin S.; Ghofrani H. A.; Hamm C. W.; Elsasser A. Stem cell-mediated natural tissue engineering. Journal of Cellular and Molecular Medicine 15: 52–62; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Musina R. A.; Bekchanova E. S.; Sukhikh G. T. Comparison of mesenchymal stem cells obtained from different human tissues. Bulletin of Experimental Biology and Medicine 139: 504–509; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Musina R. A.; Bekchanova E. S.; Belyavskii A. V.; Sukhikh G. T. Differentiation potential of mesenchymal stem cells of different origin. Bulletin of Experimental Biology and Medicine 141: 147–151; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Phinney D. G. Building a consensus regarding the nature and origin of mesenchymal stem cells. J Cell Biochem Suppl 38: 7–12; 2002.

    Article  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–7

    Google Scholar 

  • Rangwala S. M.; Lazar M. A. Transcriptional control of adipogenesis. Annu. Rev. Nutr. 20: 535–559; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi Y.; Sekiya I.; Yagishita K.; Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis and Rheumatism 52: 2521–2529; 2005.

    Article  PubMed  Google Scholar 

  • Wakitani S.; Saito T.; Caplan A. I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18: 1417–1426; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Wu G.; Zheng X.; Jiang Z.; Wang J.; Song Y. Induced differentiation of adipose-derived stromal cells into myoblasts. Journal of Huazhong University of Science and Technology Medical sciences = Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban = Huazhong keji daxue xuebao 30: 285–290; 2010.

    Google Scholar 

  • Yamamoto N.; Akamatsu H.; Hasegawa S.; Yamada T.; Nakata S.; Ohkuma M.; Miyachi E.; Marunouchi T.; Matsunaga K. Isolation of multipotent stem cells from mouse adipose tissue. J. Dermatol. Sci. 48: 43–52; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura H.; Muneta T.; Nimura A.; Yokoyama A.; Koga H.; Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell and tissue research 327: 449–462; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Zuk P. A.; Zhu M.; Ashjian P.; De Ugarte D. A.; Huang J. I.; Mizuno H.; Alfonso Z. C.; Fraser J. K.; Benhaim P.; Hedrick M. H. Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell 13: 4279–4295; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Zuk P. A.; Zhu M.; Mizuno H.; Huang J.; Futrell J. W.; Katz A. J.; Benhaim P.; Lorenz H. P.; Hedrick M. H. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue engineering 7: 211–228; 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Grant support

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiro Shirakawa.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meligy, F.Y., Shigemura, K., Behnsawy, H.M. et al. The efficiency of in vitro isolation and myogenic differentiation of MSCs derived from adipose connective tissue, bone marrow, and skeletal muscle tissue. In Vitro Cell.Dev.Biol.-Animal 48, 203–215 (2012). https://doi.org/10.1007/s11626-012-9488-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9488-x

Keywords

Navigation