Skip to main content

Advertisement

Log in

Optimization of gene delivery methods in Xenopus laevis kidney (A6) and Chinese hamster ovary (CHO) cell lines for heterologous expression of Xenopus inner ear genes

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The Xenopus inner ear provides a useful model for studies of hearing and balance because it shares features with the mammalian inner ear, and because amphibians are capable of regenerating damaged mechanosensory hair cells. The structure and function of many proteins necessary for inner ear function have yet to be elucidated and require methods for analysis. To this end, we seek to characterize Xenopus inner ear genes outside of the animal model through heterologous expression in cell lines. As part of this effort, we aimed to optimize physical (electroporation), chemical (lipid-mediated; Lipofectamine™ 2000, Metafectene® Pro), and biological (viral-mediated; BacMam virus Cellular Lights™ Tubulin-RFP) gene delivery methods in amphibian (Xenopus; A6) cells and mammalian (Chinese hamster ovary (CHO)) cells. We successfully introduced the commercially available pEGFP-N3, pmCherry-N1, pEYFP-Tubulin, and Cellular Lights™ Tubulin-RFP fluorescent constructs to cells and evaluated their transfection or transduction efficiencies using the three gene delivery methods. In addition, we analyzed the transfection efficiency of a novel construct synthesized in our laboratory by cloning the Xenopus inner ear calcium-activated potassium channel β1 subunit, then subcloning the subunit into the pmCherry-N1 vector. Every gene delivery method was significantly more effective in CHO cells. Although results for the A6 cell line were not statistically significant, both cell lines illustrate a trend towards more efficient gene delivery using viral-mediated methods; however the cost of viral transduction is also much higher. Our findings demonstrate the need to improve gene delivery methods for amphibian cells and underscore the necessity for a greater understanding of amphibian cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Altmann F.; Staudacher E.; Wilson I. B.; März L. Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj J 16(2): 109–123; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Balls M.; Worley R. S. Amphibian cells in vitro: II. Effects of variations in medium osmolarity on a permanent cell line isolated from Xenopus. Exp Cell Res 76(2): 333–336; 1973.

    Article  PubMed  CAS  Google Scholar 

  • Banerjee P.; Berry-Kravis E.; Bonafede-Chhabra D.; Dawson G. Heterologous expression of the serotonin 5-HT1A receptor in neural and non-neural cell lines. Biochem. Biophys. Res. Commun 192: 104–110; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Barry P. A. Efficient electroporation of mammalian cells in culture. In: Heiser W. C. (ed) Gene delivery to mammalian cells. Humana Press Inc., Totowa, pp 207–214; 2004.

    Google Scholar 

  • Boyer R.; Grue C. E. The need for water quality criteria for frogs. Environ Health Perspect 103(4): 352–357; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Butel J. S.; Talas M.; Ugur J.; Melnick J. L. Demonstration of infectious DNA in transformed cells. III. Correlation of detection of infectious DNA-protein complexes with persistence of virus in simian adenovirus SA7-induced tumor cells. Intervirology 5(1–2): 43–56; 1975.

    PubMed  CAS  Google Scholar 

  • Chesneau A.; Sachs L. M.; Chai N.; Chen Y.; Du Pasquier L.; Loeber J.; Pollet N.; Reilly M.; Weeks D. L.; Bronchain O. J. Transgenesis procedures in Xenopus. Biol Cell 100(9): 503–521; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Condreay J. P.; Witherspoon S. M.; Clay W. C.; Kost T. A. Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. PNAS 96: 127–132; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Desai P. N.; Shrivastava N.; Padh H. Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol. Adv 28(4): 427–435; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Díaz M. E.; Varela-Ramírez A.; Serrano E. E. Quantity, bundle types, and distribution of hair cells in the sacculus of Xenopus laevis during development. Hear. Res 91(1–2): 33–42; 1995.

    Article  PubMed  Google Scholar 

  • Duncan R. K.; Fuchs P. A. Variation in large-conductance, calcium-activated potassium channels from hair cells along the chicken basilar papilla. J. Physiol 547: 357–371; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Faletti C. J.; Perrotti N.; Taylor S. I.; Blazer-Yost B. L. sgk: an essential convergence point for peptide and steroid hormone regulation of ENaC-mediated Na+ transport. Am J Physiol Cell Physiol 282(3): C494–C500; 2002.

    PubMed  CAS  Google Scholar 

  • Fettiplace R.; Fuchs P. A. Mechanisms of Hair Cell Tuning. Annu. Rev. Physiol 61: 809–834; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Gabriel K. R. A simple method of multiple comparison of means. J. Amer. Stat. Assoc 73: 724–729; 1978.

    Article  Google Scholar 

  • Hellsten U.; Harland R. M.; Gilchrist M. J.; Hendrix D.; Jurka J.; Kapitonov V.; Ovcharenko I.; Putnam N. H.; Shu S.; Taher L.; Blitz I. L.; Blumberg B.; Dichmann D. S.; Dubchak I.; Amaya E.; Detter J. C.; Fletcher R.; Gerhard D. S.; Goodstein D.; Graves T.; Grigoriev I. V.; Grimwood J.; Kawashima T.; Lindquist E.; Lucas S. M.; Mead P. E.; Mitros T.; Ogino H.; Ohta Y.; Poliakov A. V.; Pollet N.; Robert J.; Salamov A.; Sater A. K.; Schmutz J.; Terry A.; Vize P. D.; Warren W. C.; Wells D.; Wills A.; Wilson R. K.; Zimmerman L. B.; Zorn A. M.; Grainger R.; Grammer T.; Khokha M. K.; Richardson P. M.; Rokhsar D. S. The genome of the Western clawed frog Xenopus tropicalis. Science 328(5978): 633–636; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Ibey B. L.; Xiao S.; Schoenbach K. H.; Murphy M. R.; Pakhomov A. G. Plasma membrane permeabilization by 60 and 600-ns electric pulses is determined by the absorbed dose. Bioelectromagnetics 30: 92–99; 2009.

    Article  PubMed  Google Scholar 

  • Ichigi J.; Asashima M. Dome formation and tubule morphogenesis by Xenopus kidney A6 cell cultures exposed to microgravity simulated with a 3D clinostat and to hypergravity. In Vitro Cell Dev Biol-Animal 37: 31–44; 2001.

    Article  CAS  Google Scholar 

  • Invitrogen (2011) CellLight® Reagents *BacMam 2.0* http://probes.invitrogen.com/media/pis/mp10582.pdf. Accessed 1 March 2011

  • Joint Genome Institute (1997) The Regents of the University of California, http://genome.jgi-psf.org/Xentr4/Xentr4.home.html. Cited 20 January 2009

  • Kay B.; Peng H. G. Methods in cell biology, 36, X. laevis: practical uses in cell and molecular biology. Academic, San Diego; 1991.

    Google Scholar 

  • Kim Y.; Klutz A. M.; Jacobson K. A. Systematic investigation of polyamidoamine dendrimers surface-modified with poly(ethylene glycol) for drug delivery applications: synthesis, characterization, and evaluation of cytotoxicity. Bioconjug Chem 19: 1660–1672; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Knight V. B.; Serrano E. E. Tissue and species differences in the application of quantum dots as probes for biomolecular targets in the inner ear and kidney. IEEE Transactions in Nanobioscience 5: 251–262; 2006.

    Article  Google Scholar 

  • Liu M. Y.; Lin S. C.; Liu H.; Candal F.; Vafai A. Identification and authentication of animal cell culture by polymerase chain reaction amplification and DNA sequencing. In Vitro Cell Dev Biology-Animal 39: 424–427; 2004.

    Article  CAS  Google Scholar 

  • Long G.; Pan X.; Kormelink R.; Vlak J. M. Functional entry of baculovirus into insect and mammalian cells is dependent on clathrin-mediated endocytosis. J. Virol 80(17): 8830–8833; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Novoa J. M.; Quiros Y.; Vicente L.; Morales A. I.; Lopez-Hernandez F. J. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int 79(1): 33–45; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Matsuki N.; Ishikawa T.; Imai Y.; Yamaguchi T. Low voltage pulses can induce apoptosis. Cancer Lett 269(1): 93–100; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Mies F.; Spriet C.; Héliot L.; Sariban-Sohraby S. Epithelial Na+ channel stimulation by n-3 fatty acids requires proximity to a membrane-bound A-kinase-anchoring protein complexed with protein kinase A and phosphodiesterase. J. Biol. Chem 282(25): 18339–18347; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Nakahara T.; Yaguchi H.; Yoshida M.; Junji M. Effects of exposure of CHO-K1 cells to a 10-T Static Magnetic Field. Radiology 224: 817–822; 2002.

    Article  PubMed  Google Scholar 

  • Oberholtzer C. J. Frequency tuning cochlear hair cells by differential splicing of BK channel transcripts. Journal Physiol 518: 653–665; 1999.

    Article  Google Scholar 

  • Orio P.; Rojas P.; Ferreira G.; Latorre R. New disguises for an old channel: MaxiK channel beta-subunits. News Physiol Sci 17: 156–161; 2002.

    PubMed  CAS  Google Scholar 

  • Powers T.; Trujillo-Provencio C.; Whittaker C.; Serrano E. E. Gene expression profiling of Xenopus organs yields insight into the Xenopus inner ear transcriptome. ARO. Abstr 30: 741; 2007.

    Google Scholar 

  • Pyott S. J.; Meredith A. L.; Fodor A. A.; Vazquez A. E.; Yamoah E. N.; Aldrich R. W. Cochlear function in mice lacking the BK channel α, β1, or β4 subunits. J. Biol. Chem 282: 3312–3324; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan K.; Michael T. H.; Jiang G. J.; Hiel H.; Fuchs P. A. A molecular mechanism for electrical tuning of cochlear hair cells. Science 283: 215–217; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Scolnick E. M.; Bumgarner S. J. Isolation of infectious xenotropic mouse type C virus by transfection of a heterologous cell with DNA from a transformed mouse cell. J. Virol 15(5): 1293–1296; 1975.

    PubMed  CAS  Google Scholar 

  • Serrano E. E.; Trujillo-Provencio C.; Sultemeier D. R.; Bullock W. M.; Quick Q. A. Identification of genes expressed in the Xenopus inner ear. Cell Mol Biol (Noisy-le-grand) 47(7): 1229–1239; 2001.

    CAS  Google Scholar 

  • Shin J. B.; Adams D.; Paukert M.; Siba M.; Sidi S.; Levin M.; Gillespie P. G.; Gründer S. Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells. Proc Natl Acad Sci 102(35): 12572–12577; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Smith G. E.; Summers M. D.; Fraser M. J. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol 3(12): 2156–2165; 1983.

    PubMed  CAS  Google Scholar 

  • Sultemeier D. R.; Knight V. B.; Manuelito S. J.; Hopkins M.; Serrano E. E. Heterologous and homologous expression systems for functional analysis of Xenopus inner ear genes. Assoc. Res Otolaryngol Abs: 821; 2005.

  • Tanaka M.; Asashima M.; Atomi Y. Proliferation and differentiation of Xenopus A6 cells under hypergravity as revealed by time-lapse imaging. Vitro Cell Dev Biol Anim 39(1–2): 71–79; 2003.

    Article  Google Scholar 

  • Terhag J.; Cavara N. A.; Hollmann M. Cave Canalem: how endogenous ion channels may interfere with heterologous expression in Xenopus oocytes. Methods 51(1): 66–74; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Trujillo-Provencio C.; Powers T. R.; Sultemeier D. R.; Serrano E. E. RNA isolation from Xenopus inner ear sensory endorgans for transcriptional profiling and molecular cloning. Methods Mol Biol 493: 3–20; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Varela-Ramírez A.; Trujillo-Provencio C.; Serrano E. E. Detection of transcripts for delayed rectifier potassium channels in the X. laevis inner ear. Hear. Res 119(1–2): 125–134; 1998.

    Article  PubMed  Google Scholar 

  • Wyatt S. K.; Giorgio T. D. DNA delivery to cells in culture using cationic liposomes. In: Heiser W. C. (ed) Gene delivery to mammalian cells. Humana Press Inc., Totowa, pp 83–86; 2004.

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Karla Almaraz for assistance with cell culture. Funding for this research was provided by Graduate Fellowships from NSF to DRG (New Mexico AMP, HRD-0331446; IGERT, DGE0504304) and NIH grants to EES (R01DC03292 and P50GM068762).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elba E. Serrano.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramirez-Gordillo, D., Trujillo-Provencio, C., Knight, V.B. et al. Optimization of gene delivery methods in Xenopus laevis kidney (A6) and Chinese hamster ovary (CHO) cell lines for heterologous expression of Xenopus inner ear genes. In Vitro Cell.Dev.Biol.-Animal 47, 640–652 (2011). https://doi.org/10.1007/s11626-011-9451-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-011-9451-2

Keywords

Navigation