Skip to main content
Log in

Rapid and quantitative detection of p38 kinase pathway in mouse blood monocyte

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The p38α mitogen-activated protein kinase (MAPK) is essential in controlling the production of many proinflammtory cytokines, and its specific inhibitor can effectively block their production for treating human diseases. To effectively identify highly specific p38α inhibitors in vivo, we developed an ex vivo mouse blood cell-based assay by flow cytometry to measure the intracellular p38α kinase activation. We first attempted to identify the individual blood cell population in which the p38α kinase pathway is highly expressed and activated. Based on CD11b, combined with Ly-6G cell surface expression, we identified two distinct subsets of non-neutrophilic myeloid cells, CD11bMedLy-6G and CD11bLoLy-6G, and characterized them as monocytes and natural killer (NK) cells, respectively. Then, we demonstrated that only monocytes, not NK cells, expressed a high level of p38α kinase, which was rapidly activated by anisomycin stimulation as evidenced by the phosphorylation of both p38 and its substrate, MAPKAP-K2 (MK2). Finally, the p38α kinase pathway activation in monocytes was fully inhibited by a highly selective p38α kinase inhibitor dose-dependently in vitro and in vivo. In conclusion, we demonstrated an effective method for separating blood monocytes from other cells and for detecting the expression level and activation of the p38α kinase pathway in monocytes, which provided a new approach for the rapid identification of specific p38α inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4
Figure 5.

Similar content being viewed by others

References

  • Anderson K. L.; Smith K. A.; Perkin H.; Hermanson G.; Anderson C. G.; Jolly D. J.; Ma R. A.; Torbett B. E. PU.1 and the granulocyte- and macrophage colony-stimulating factor receptors play distinct roles in late-stage myeloid cell differentiation. Blood 94:2310–2318; 1999.

    PubMed  CAS  Google Scholar 

  • Andersson K.; Sundler R. Signalling to translational activation of tumour necrosis factor-alpha expression in human THP-1 cells. Cytokine 12:1784–1787; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Andreakos E. Targeting cytokines in autoimmunity: new approaches, new promise. Expert Opin Biol Ther 3:435–447; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Burke B.; P.ridmore A.; Harraghy N.; Collick A.; Brown J.; Mitchell T. Transgenic mice showing inflammation-inducible overexpression of granulocyte macrophage colony-stimulating factor. Clin Diagn Lab Immunol 11:588–598; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Comalada M.; Xaus J.; Valledor A. F.; Lopez-Lopez C.; Pennington D. J.; Celada A. PKC epsilon is involved in JNK activation that mediates LPS-induced TNF-alpha, which induces apoptosis in macrophages. Am J Physiol Cell Physiol 285:C1235–C1245; 2003.

    PubMed  CAS  Google Scholar 

  • de Dios A.; Shih C., et al. Design of potent and selective 2-aminobenzimidazole-based p38a MAP kinase inhibitors with extracellular in vitro efficacy. J Med Chem 48:2270–2273; 2005.

    Article  PubMed  Google Scholar 

  • Di Santo J. P.; Vosshenrich C. A. Bone marrow versus thymic pathways of natural killer cell development. Immunol Rev 214:35–46; 2006 (Review).

    Article  PubMed  Google Scholar 

  • Geissmann F.; Jung S.; Littman D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Grage-Grieben E.; Flad H. D.; Ernst M. Heterogeneity of human peripheral blood monocyte subsets. J Leukoc Biol 69:11–20; 2001 (Review).

    Google Scholar 

  • Henderson R. B.; Hobbs J. R.; Mathies M.; Hogg N. Rapid recruitment of inflammatory monocytes is independent of neutrophil migration. Blood 102:328–335; 2003.

    Article  PubMed  CAS  Google Scholar 

  • House D.; Chinh N. T.; Hien T. T.; Parry C. P.; Ly N. T.; Diep T. S.; Wain J.; Dunstan S.; White N. J.; Dougan G.; Farrar J. J. Cytokine release by lipopolysaccharide-stimulated whole blood from patients with typhoid fever. J Infect Dis. 186(2):240–245; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Jacquin C.; Gran D. E.; Lee S. K.; Lorenzo J. A.; Aguila H. L. Identification of multiple osteoclast precursor populations in murine bone marrow. J Bone Miner Res 21:67–77; 2006.

    Article  PubMed  Google Scholar 

  • Kotlyarov A.; Gaestel M. Is MK2 (mitogen-activated protein kinase-activated protein kinase 2) the key for understanding post-transcriptional regulation of gene expression? Biochem Soc Trans 30:959–963. 2002 (Review).

    Article  PubMed  CAS  Google Scholar 

  • Kotlyarov A.; Neininge A.; Schubert C.; Eckert R.; Birchmeier C.; Volk H. D.; Gaestel M. MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat Cell Biol 1:94–97; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Lagasse E.; Weissman I. L. Flow cytometric identification of murine neutrophils and monocytes. J Immunol Methods 197:139–150; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Lee R.; Dominguez Celia. MAP kinase p38 inhibitors: clinical results and an intimate look at their interactions with p38a protein. Current Med Chem 12:2979–2794 2005.

    Article  CAS  Google Scholar 

  • Lehner M. D.; Schwoebel F.; Kotlyarov A.; Leist M.; Gaestel M.; Hartung T. Mitogen-activated protein kinase-activated protein kinase 2-deficient mice show increased susceptibility to Listeria monocytogenes infection. J Immunol 168:4667–4673; 2002.

    PubMed  CAS  Google Scholar 

  • McCormick C.; Gan D. The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 307:739–741; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Nagendra S.; Schlueter A. J. Absence of cross-reactivity between murine Ly-6C and Ly-6G. Cytometry A 58:195–200; 2004.

    Article  PubMed  Google Scholar 

  • Neininger A.; Kontoyiannis D.; Kotlyarov A.; Winzen R.; Eckert R.; Volk H. D.; Holtmann H.; Kolli G.; Gaestel M.; MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J Biol Chem 277:3065–3068; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Nikolic T.; Bouma G.; Drexhage H. A.; Leenen P. J. Diabetes-prone NOD mice show an expanded subpopulation of mature circulating monocytes, which preferentially develop into macrophage-like cells in vitro. J Leukoc Biol 78:70–79; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Nockher W. A.; Wiemer J.; Scherberich J. E. Haemodialysis monocytopenia: differential sequestration kinetics of CD14+ CD16+ and CD14++ blood monocyte subsets. Clin Exp Immunol 123:49–55; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Peifer C.; Wagner G.; Laufer S. New approaches to the treatment of inflammatory disorders small molecule inhibitors of p38 MAP kinase. Curr Top Med Chem 6:113–149; 2006 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Saklatvala J. The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol 4:372–377; 2004 (Review).

    Article  PubMed  CAS  Google Scholar 

  • Schieven G. L. The biology of p38 kinase: a central role in inflammation. Curr Top Med Chem 5:921–928; 2005 (Review).

    Article  PubMed  CAS  Google Scholar 

  • Strauss-Ayali D.; Conrad S. M.; Mosser, D. M. Monocyte subpopulations and their differentiation patterns during infection. J Leukoc Biol 82:244–252; 2007 (Review).

    Article  PubMed  CAS  Google Scholar 

  • Sunderkotter C.; Nikolic T.; Dillon M. J.; Van Rooijen N.; Stehling M.; Drevets D. A.; Leenen P. J. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172:4410–4417; 2004.

    PubMed  Google Scholar 

  • Weber C.; Belge K. U.; von Hundelshausen P.; Draude G.; Steppich B.; Mack M.; Frankenberger M.; Weber K. S.; Ziegler-Heitbrock H. W. Differential chemokine receptor expression and function in human monocyte subpopulations. J Leukoc Biol 67:699–704; 2000.

    PubMed  CAS  Google Scholar 

  • Wiktor-Jedrzejczak W.; Gordon S. Cytokine regulation of the macrophage (M phi) system studied using the colony stimulating factor-1-deficient op/op mouse. Physiol Rev 76:927–947; 1996 (Review).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Deltagen for providing MAPKAPK2 knockout mice and Larry Mann for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songqing Na.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Evans, G., Li, W. et al. Rapid and quantitative detection of p38 kinase pathway in mouse blood monocyte. In Vitro Cell.Dev.Biol.-Animal 44, 145–153 (2008). https://doi.org/10.1007/s11626-008-9088-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-008-9088-y

Keywords

Navigation