Skip to main content
Log in

Determination of lowest possible contrast volume in computed tomography pulmonary angiography by using pulmonary transit time

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to assess the effectiveness of the modified test-bolus (mTB) method in computed tomography pulmonary angiography (CTPA).

Materials and methods

The Institutional Review Board approved this retrospective study. We reviewed 24 patients (nine men, 15 women; age range, 21–88 years) in whom CTPA was performed either by Bolus-Tracking (BT) (n = 12) or mTB (n = 12) methods. Pulmonary transit time (PTT) was used to determine scan delay time and contrast volume in the mTB group. The contrast volume, radiation dose, quantitative measures, and qualitative scores of enhancement were compared. The chi-squared test, Mann–Whitney U test, and κ statistics were used. The significance level was 0.05.

Results

The effective dose (P = 0.028) and contrast volume (P < 0.001) was significantly lower in the mTB group than those in the BT group. The difference in the quantitative measures and qualitative scores of enhancement between groups was statistically insignificant (P = 0.729, P = 0.635, respectively). Significantly fewer artefacts were observed in the mTB group (P = 0.024).

Conclusion

By taking into account PTT, mTB appears to be a promising method for tailoring CTPA to the patient with the use of less contrast material and resulting in fewer artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BT:

Bolus-tracking

CT:

Computed tomography

CTDI:

Computed tomography dose index

CTPA:

Computed tomography pulmonary angiography

DLP:

Dose-length product

ED:

Effective dose

mTB:

Modified test-bolus

PTT:

Pulmonary transit time

ROI:

Region of interest

t cont :

Contrast delivery time

TCPaorta :

Time of contrast peak in the aorta

TCPpulm :

Time of contrast peak in the pulmonary trunk

t delay :

Scan delay time

TB:

Test-bolus

t scan :

Scanning time

References

  1. Remy-Jardin M, Remy J, Wattinne L, Giraud F. Central pulmonary thromboembolism: diagnosis with spiral volumetric CT with the single-breath-hold technique—comparison with pulmonary angiography. Radiology. 1992;185:381–7.

    CAS  PubMed  Google Scholar 

  2. Nyman U, Almén T, Aspelin P, Hellström M, Kristiansson M, Sterner G. Contrast-medium-induced nephropathy correlated to the ratio between dose in gram iodine and estimated GFR in ml/min. Acta Radiol. 2005;46:830–42.

    Article  CAS  PubMed  Google Scholar 

  3. Henzler T, Meyer M, Reichert M, Krissak R, Nance JW Jr, Haneder S, et al. Dual-energy CT angiography of the lungs: comparison of test bolus and bolus tracking techniques for the determination of scan delay. Eur J Radiol. 2012;81:132–8.

    Article  PubMed  Google Scholar 

  4. Kerl JM, Lehnert T, Schell B, Bodelle B, Beeres M, Jacobi V, et al. Intravenous contrast material administration at high-pitch dual-source CT pulmonary angiography: test bolus versus bolus-tracking technique. Eur J Radiol. 2012;81:2887–91.

    Article  PubMed  Google Scholar 

  5. Lee CH, Goo JM, Lee HJ, Kim KG, Im J-G, Bae KT, et al. Determination of optimal timing window for pulmonary artery MDCT angiography. AJR. 2007;188:313–7.

    Article  PubMed  Google Scholar 

  6. Rodrigues JCL, Mathias H, Negus IS, Manghat NE, Hamilton MCK. Intravenous contrast medium administration at 128 multidetector row CT pulmonary angiography: bolus tracking versus test bolus and the implications for diagnostic quality and effective dose. Clin Radiol. 2012;67:1053–60.

    Article  CAS  PubMed  Google Scholar 

  7. U-King-Im JM, Freeman SJ, Boylan T, Cheow HK. Quality of CT pulmonary angiography for suspected pulmonary embolus in pregnancy. Eur Radiol. 2008;18:2709–15.

    Article  PubMed  Google Scholar 

  8. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology. 2010;256:32–61.

    Article  PubMed  Google Scholar 

  9. Bulla S, Pache G, Bley T, Langer M, Blanke P. Simultaneous bilateral contrast injection in computed tomography pulmonary angiography. Acta Radiol. 2012;53:69–75.

    Article  PubMed  Google Scholar 

  10. Holmquist F, Hansson K, Pasquariello F, Björk J, Nyman U. Minimizing contrast medium doses to diagnose pulmonary embolism with 80-kVp multidetector computed tomography in azotemic patients. Acta Radiol. 2009;50:181–93.

    Article  CAS  PubMed  Google Scholar 

  11. Johnson TRC, Nikolaou K, Wintersperger BJ, Fink C, Rist C, Leber AW, et al. Optimization of contrast material administration for electrocardiogram-gated computed tomographic angiography of the chest. J Comput Assist Tomogr. 2007;31:265–71.

    Article  PubMed  Google Scholar 

  12. Singh S, Kalra MK, Gilman MD, Hsieh J, Pien HH, Digumarthy SR, et al. Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Radiology. 2011;259:565–73.

    Article  PubMed  Google Scholar 

  13. Henk CB, Grampp S, Linnau KF, Thurnher MM, Czerny C, Herold CJ, et al. Suspected pulmonary embolism: enhancement of pulmonary arteries at deep-inspiration CT angiography-influence of patent foramen ovale and atrial-septal defect. Radiology. 2003;226:749–55.

    Article  PubMed  Google Scholar 

  14. Bach AG, Schramm D, Behrmann C, Spielmann RP, Surov A. Estimation of pulmonary transit time as a by-product in standard CT pulmonary angiography. Acta Radiol. 2013;54:22–3.

    Article  PubMed  Google Scholar 

  15. Shors SM, Cotts WG, Pavlovic-Surjancev B, François CJ, Gheorghiade M, Finn JP. Heart failure: evaluation of cardiopulmonary transit times with time-resolved MR angiography. Radiology. 2003;229:743–8.

    Article  PubMed  Google Scholar 

  16. Lakoma A, Tuite D, Sheehan J, Weale P, Carr JC. Measurement of pulmonary circulation parameters using time-resolved MR angiography in patients after Ross procedure. AJR. 2010;194:912–9.

    Article  PubMed  Google Scholar 

  17. Jeong HJ, Vakil P, Sheehan JJ, Shah SJ, Cuttica M, Carr JC, et al. Time-resolved magnetic resonance angiography: evaluation of intrapulmonary circulation parameters in pulmonary arterial hypertension. J Magn Reson Imaging. 2011;33:225–31.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Bauer RW, Schell B, Beeres M, Wichmann JL, Bodelle B, Vogl TJ, et al. High-pitch dual-source computed tomography pulmonary angiography in freely breathing patients. J Thorac Imaging. 2012;27:376–81.

    Google Scholar 

  19. Heyer CM, Mohr PS, Lemburg SP, Peters SA, Nicolas V. Image quality and radiation exposure at pulmonary CT angiography with 100- or 120-kVp protocol: prospective randomized study. Radiology. 2007;245:577–83.

    Article  PubMed  Google Scholar 

  20. Report of AAPM Task Group 23. The Measurement, Reporting, and Management of Radiation Dose in CT. AAPM Report No. 96. Available from: http://www.aapm.org/pubs/reports/rpt_96.pdf.

  21. Wittram C, How I. Do it: CT pulmonary angiography. AJR. 2007;188:1255–61.

    Article  PubMed  Google Scholar 

  22. Coche E, Verschuren F, Keyeux A, Goffette P, Goncette L, Hainaut P, et al. Diagnosis of acute pulmonary embolism in outpatients: comparison of thin-collimation multi-detector row spiral CT and planar ventilation-perfusion scintigraphy. Radiology. 2003;229:757–65.

    Article  PubMed  Google Scholar 

  23. Hartmann IJC, Wittenberg R, Schaefer-Prokop C. Imaging of acute pulmonary embolism using multi-detector CT angiography: an update on imaging technique and interpretation. Eur J Radiol. 2010;74:40–9.

    Article  PubMed  Google Scholar 

  24. Jeong YJ, Lee KS, Yoon YC, Kim TS, Chung MJ, Kim S. Evaluation of small pulmonary arteries by 16-slice multidetector computed tomography: optimum slab thickness in condensing transaxial images converted into maximum intensity projection images. J Comput Assist Tomogr. 2004;28:195–203.

    Article  PubMed  Google Scholar 

  25. Tack D, De Maertelaer V, Petit W, Scillia P, Muller P, Suess C, et al. Multi-detector row CT pulmonary angiography: comparison of standard-dose and simulated low-dose techniques. Radiology. 2005;236:318–25.

    Article  PubMed  Google Scholar 

  26. Heuschmid M, Mann C, Luz O, Mahnken AH, Reimann A, Claussen CD, et al. Detection of pulmonary embolism using 16-slice multidetector-row computed tomography: evaluation of different image reconstruction parameters. J Comput Assist Tomogr. 2006;30:77–82.

    Article  PubMed  Google Scholar 

  27. Nishino M, Kubo T, Kataoka ML, Gautam S, Raptopoulos V, Hatabu H. Evaluation of pulmonary embolisms using coronal reformations on 64-row multidetector-row computed tomography: comparison with axial images. J Comput Assist Tomogr. 2006;30:233–7.

    Article  PubMed  Google Scholar 

  28. Hunsaker AR, Oliva IB, Cai T, Trotman-Dickenson B, Gill RR, Hatabu H, et al. Contrast opacification using a reduced volume of iodinated contrast material and low peak kilovoltage in pulmonary CT angiography: Objective and subjective evaluation. AJR. 2010;195:W118–24.

    Article  PubMed  Google Scholar 

  29. Bédard JP, Blais C, Patenaude YG, Monga E. Pulmonary embolism: prospective comparison of iso-osmolar and low-osmolarity nonionic contrast agents for contrast enhancement at CT angiography. Radiology. 2005;234:929–33.

    Article  PubMed  Google Scholar 

  30. Adams DM, Stevens SM, Woller SC, Evans RS, Lloyd JF, Snow GL, et al. Adherence to PIOPED II investigators’ recommendations for computed tomography pulmonary angiography. Am J Med. 2013;126:36–42.

    Article  PubMed  Google Scholar 

  31. Yuan R, Shuman WP, Earls JP, Hague CJ, Mumtaz HA, Scott-Moncrieff A, et al. Reduced iodine load at CT pulmonary angiography with dual-energy monochromatic imaging: comparison with standard CT pulmonary angiography: a prospective randomized trial. Radiology. 2012;262:290–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. The local institutional review board (Gazi University Institutional Review Board: 2012, Ref. No: 360) approved this retrospective study.

Conflict of interest

We declare that we have no actual or potential conflicts of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koray Kilic.

About this article

Cite this article

Kilic, K., Erbas, G., Ucar, M. et al. Determination of lowest possible contrast volume in computed tomography pulmonary angiography by using pulmonary transit time. Jpn J Radiol 32, 90–97 (2014). https://doi.org/10.1007/s11604-013-0274-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-013-0274-9

Keywords

Navigation