Skip to main content
Log in

Clinical feasibility of pulmonary perfusion analysis using dynamic computed tomography and a gamma residue function

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

To create and determine the clinical feasibility of a model based on dynamic computed tomography (CT) and a bolus injection of iodine contrast medium for evaluation of pulmonary perfusion for healthy individuals and for patients with lung diseases.

Materials and methods

We analyzed pulmonary perfusion by means of dynamic 16-row multidetector CT scanning with a gamma residue function with adding a linear component (extended gamma function model) for 20 healthy individuals and in five patients.

Results

Four types of the time–attenuation curve (TAC) were identified for the peripheral lung. Although the TACs of most pixels for the peripheral lung comprised a single peak or a single-peak followed by another increase, no peak was observed for a small proportion of pixels, which either increased linearly or resulted in a delayed peak for healthy subjects. The ratios of these linearly increasing or delayed peak types of lung fields increased for pathological lungs. The analytical results for pathological cases showed that changes in lung perfusion, difficult to identify using only CT imaging, could be detected.

Conclusions

The extended gamma function model adequately evaluated pulmonary perfusion not only for normal regions, but also for structurally abnormal regions. Regional changes in perfusion could be evaluated by use of our model, and we confirmed its clinical feasibility for pulmonary perfusion analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miles KA, Griffiths MR, Perfusion CT. A worthwhile enhancement? Br J Radiol. 2003;76:220–31.

    Article  PubMed  CAS  Google Scholar 

  2. Hoeffner EG, Case I, Jain R. Cerebral perfusion CT: technique and clinical applications. Radiology. 2004;231:632–44.

    Article  PubMed  Google Scholar 

  3. Gefter WB, Hatabu H. Functional lung imaging: emerging methods to visualize regional pulmonary physiology. Acad Radiol. 2003;10:1085–9.

    Article  PubMed  Google Scholar 

  4. Hatabu H, Tadamura E, Levin DL, Chen Q, Li W, Kim D, Prasad PV, et al. Quantitative assessment of pulmonary perfusion with dynamic contrast-enhanced MRI. Magn Reson Med. 1999;42:1033–8.

    Article  PubMed  CAS  Google Scholar 

  5. Tajik JK, Tran BQ, Hoffman EA. Assessing regional pulmonary microvascular transit times and flow using dynamic multi-slice CT. Am J Respir Crit Care Med. 1996;153:A816.

    Google Scholar 

  6. Guyton AC. Cardiac output and its regulation. In: Circulatory physiology 2. Philadelphia: Saunders; 1963. p. 168–70.

  7. Van Beck EJR, Hoffman EA. Functional imaging: CT and MRI. Clin Chest Med. 2008;29:195–216.

    Article  Google Scholar 

  8. Basran PS, Kay I, Spencer DP. Functional CT in lung with a conventional scanner: simulations and sampling considerations. Phys Med Biol. 2004;49:1755–71.

    Article  PubMed  Google Scholar 

  9. Clough AV, al-Tnawi A, Linehan JH, Dawson CA. Regional transit time estimation from image residue curves. Ann Biomed Eng. 1994;22:128–43.

    Article  PubMed  CAS  Google Scholar 

  10. Thompson HK Jr, Starmer CF, Whalen RE, Mcintosh HD. Indicator transit time considered as gamma variate. Circ Res. 1964;14:502–15.

    Article  PubMed  Google Scholar 

  11. R Development Core Team. R: a language and environment for statistical computing. Austria: R Foundation for Statistical Computing, Vienna; 2005. ISBN 3-900051-070-0. http://www.r-project.org.

  12. Harvey M. Curvefit.com. Graphpad Software Inc. http://graphpad.com/curvefit/goodness_of_fit.htm.

  13. Simon BA. Non-invasive imaging of regional lung function using x-ray computed tomography. J Clin Monit Comput. 2000;16:433–42.

    Article  PubMed  CAS  Google Scholar 

  14. Won C, Chon D, Tajik J, Tran BQ, Robinswood GB, Beck KC, et al. CT-based assessment of regional pulmonary microvascular blood flow parameters. J Appl Physiol. 2003;94:2483–93.

    PubMed  Google Scholar 

  15. Axel L. Tissue transit time from dynamic computed tomography by a simple deconvolution technique. Investig Radiol. 1983;18:94–9.

    Article  CAS  Google Scholar 

  16. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusible tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10:223–32.

    Article  PubMed  CAS  Google Scholar 

  17. Kealey SM, Loving VA, Delong DM, Eastwood JD. User-defined vascular input function curves: influence on mean perfusion parameter values and signal-to-noise ratio. Radiology. 2004;231:587–93.

    Article  PubMed  Google Scholar 

  18. Wintermark M, Maeder P, Thiran JP, Schnyder P, Meuli R. Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of underlying theoretical models. Eur Radiol. 2001;11:1220–30.

    Article  PubMed  CAS  Google Scholar 

  19. Hoffman EA, Chon D. Computed tomography studies of lung ventilation and perfusion. Proc Am Thorac Soc. 2005;2:492–8.

    Article  PubMed  Google Scholar 

  20. Ley-Zaporozhan J, Ley S, Kauczor HU. Morphological and functional imaging in COPD with CT and MRI: present and future. Eur Radiol. 2008;18:510–21.

    Article  PubMed  Google Scholar 

  21. Dougherty L, Asmuth JC, Gefter WB. Alignment of CT lung volumes with an optical flow method. Acad Radiol. 2003;10:249–54.

    Article  PubMed  Google Scholar 

  22. Gee J, Sundaram T, Hasegawa I, Uematsu H, Hatabu H. Characterization of regional pulmonary mechanics from serial MRI data. Acad Radiol. 2003;10:1147–52.

    Article  PubMed  Google Scholar 

  23. Lee MC, Cha S, Chang SM, Nelson SJ. Dynamic susceptibility contrast perfusion imaging of radiation effects in normal-appearing brain tissue: changes in first-pass and recirculation phases. J Magn Reson Imaging. 2005;21:683–93.

    Article  PubMed  Google Scholar 

  24. Bae KT, Heiken JP, Brink JA. Aortic and hepatic contrast medium enhancement at CT. Part 1. Prediction with a computer model. Radiology. 1998;207:647–55.

    PubMed  CAS  Google Scholar 

  25. Kormano M, Dean PB. Extravascular contrast material: the major component of contrast enhancement. Radiology. 1976;121:379–82.

    PubMed  CAS  Google Scholar 

  26. Brix G, Bahner ML, Hoffmann U, Horvath A, Schreiber W. Regional blood flow, capillary permeability, and compartmental volumes: measurement with dynamic CT-initial experience. Radiology. 1999;210:269–76.

    PubMed  CAS  Google Scholar 

  27. Clough AV, Haworth ST, Roerig DL, Hoffman EA, Dawson CA. Influence of gravity on radiographic contrast material-based measurements of regional blood flow distribution. Acad Radiol. 2003;10:128–38.

    Article  PubMed  Google Scholar 

  28. Beck KC, Rehder K. Differences in regional vascular conductances in isolated dog lung. J Appl Physiol. 1986;61:530–8.

    PubMed  CAS  Google Scholar 

  29. Austin JH. Pulmonary emphysema: imaging assessment of lung volume reduction surgery. Radiology. 1999;212:1–3.

    PubMed  CAS  Google Scholar 

  30. Wu MT, Chang JM, Chiang AA, Lu JY, Hsu KK, Hsu WH, Yang CF. Use of quantitative CT to predict postoperative lung function in patients with lung cancer. Radiology. 1994;191:257–62.

    PubMed  CAS  Google Scholar 

  31. Le Cras TD, Fernandez LG, Postura PA. Vascular growth and remodeling in compensatory lung growth following right lobectomy. J Appl Physiol. 2005;98:1140–8.

    Article  PubMed  Google Scholar 

  32. Yu H, Zhao S, Hoffman EA, Wang G. Ultra-low dose lung CT perfusion regularized by a previous scan. Acad Radiol. 2009;16:363–73.

    Article  PubMed  Google Scholar 

  33. Hoffman EA, Clough AV, Christensen GE, Lin CL, McLennan G, Reinhardt JM, et al. The comprehensive imaging-based analysis of the lung. Acad Radiol. 2004;11:1370–80.

    Article  PubMed  Google Scholar 

  34. Kalender WA, Wolf H, Suess C, Gies M, Greess H, Bautz WA. Dose reduction in CT by on-line tube current control: principles and validation on phantoms and cadavers. Eur Radiol. 1999;9:323–8.

    Article  PubMed  CAS  Google Scholar 

  35. Huda W. Dose and image quality in CT. Pediatr Radiol. 2002;32:709–13.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Shimatani.

About this article

Cite this article

Shimatani, Y., Kodani, K., Okada, J. et al. Clinical feasibility of pulmonary perfusion analysis using dynamic computed tomography and a gamma residue function. Jpn J Radiol 31, 243–252 (2013). https://doi.org/10.1007/s11604-012-0175-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-012-0175-3

Keywords

Navigation