Skip to main content

Advertisement

Log in

Functional computed tomography imaging of tumor-induced angiogenesis: preliminary results of new tracer kinetic modeling using a computer discretization approach

  • Original Article
  • Published:
Radiation Medicine Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to establish functional computed tomography (CT) imaging as a method for assessing tumor-induced angiogenesis.

Materials and methods

Functional CT imaging was mathematically analyzed for 14 renal cell carcinomas by means of two-compartment modeling using a computer-discretization approach. The model incorporated diffusible kinetics of contrast medium including leakage from the capillary to the extravascular compartment and back-flux to the capillary compartment. The correlations between functional CT parameters [relative blood volume (rbv), permeability 1 (Pm1), and permeability 2 (Pm2)] and histopathological markers of angiogenesis [microvessel density (MVD) and vascular endothelial growth factor (VEGF)] were statistically analyzed.

Results

The modeling was successfully performed, showing similarity between the mathematically simulated curve and the measured time-density curve. There were significant linear correlations between MVD grade and Pm1 (r = 0.841, P = 0.001) and between VEGF grade and Pm2 (r = 0.804, P = 0.005) by Pearson’s correlation coefficient.

Conclusion

This method may be a useful tool for the assessment of tumor-induced angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002;29:15–18.

    PubMed  CAS  Google Scholar 

  2. Papetti M, Herman IM. Mechanisms of normal and tumorderived angiogenesis. Am J Physiol Cell Physiol 2002;282:C947–C970.

    PubMed  CAS  Google Scholar 

  3. Ueda T, Ito H, Guermazi A. Preoperative navigation of nephron-sparing surgery. In: Guermazi A (ed) Imaging of kidney cancer. New York: Springer; 2006. p. 397–414.

    Chapter  Google Scholar 

  4. Russo P. Renal cell carcinoma: presentation, staging, and surgical treatment. Semin Oncol 2000;27:160–176.

    PubMed  CAS  Google Scholar 

  5. Nativ O, Sabo E, Reiss A, Wald M, Madjar S, Moskovitz B. Clinical significance of tumor angiogenesis in patients with localized renal cell carcinoma. Urology 1998;51:693–696.

    Article  PubMed  CAS  Google Scholar 

  6. Dekel Y, Koren R, Kugel V, Livne PM, Gal R. Significance of angiogenesis and microvascular invasion in renal cell carcinoma. Pathol Oncol Res 2002;8:129–132.

    PubMed  Google Scholar 

  7. Passe TJ, Bluemke DA, Siegelman SS. Tumor angiogenesis: tutorial on implications for imaging. Radiology 1997;203:593–600.

    PubMed  CAS  Google Scholar 

  8. McDonald DM, Choyke PL. Imaging of angiogenesis: from microscope to clinic. Nat Med 2003;9:713–725.

    Article  PubMed  CAS  Google Scholar 

  9. Miles KA. Tumour angiogenesis and its relation to contrast enhancement on computed tomography: a review. Eur J Radiol 1999;30:198–205.

    Article  PubMed  CAS  Google Scholar 

  10. Miles KA. Functional computed tomography in oncology. Eur J Cancer 2002;38:2079–2084.

    Article  PubMed  CAS  Google Scholar 

  11. Lee TY, Purdie TG, Stewart E. CT imaging of angiogenesis. Q J Nucl Med 2003;47:171–187.

    PubMed  Google Scholar 

  12. Szabo BK, Aspelin P, Kristoffersen Wiberg M, Tot T, Bone B. Invasive breast cancer: correlation of dynamic MR features with prognostic factors. Eur Radiol 2003;13:2425–2435.

    Article  PubMed  Google Scholar 

  13. Jinzaki M, Tanimoto A, Mukai M, Ikeda E, Kobayashi S, Yuasa Y, et al. Double-phase helical CT of small renal parenchymal neoplasms: correlation with pathologic findings and tumor angiogenesis. J Comput Assist Tomogr 2000;24:835–842.

    Article  PubMed  CAS  Google Scholar 

  14. Lee TY. Functional CT: physiological models. Trends Biotechnol 2002;20:S3–S10.

    Article  Google Scholar 

  15. Ueda T, Mori K, Minami M, Motoori K, Ito H. Trends in oncological CT imaging: clinical application of multidetector row CT and 3D-CT imaging. Int J Clin Oncol 2006;11:268–277.

    Article  PubMed  Google Scholar 

  16. Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee TY. Dynamic CT measurement of cerebral blood flow: a validation study. AJNR Am J Neuroradiol 1999;20:63–73.

    PubMed  CAS  Google Scholar 

  17. Nabavi DG, Cenic A, Craen RA, Gelb AW, Bennett JD, Kozak R, et al. CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology 1999;213:141–149.

    PubMed  CAS  Google Scholar 

  18. Hoeffner EG, Case I, Jain R, Gujar SK, Shah GV, Deveikis JP, et al. Cerebral perfusion CT: technique and clinical applications. Radiology 2004;231:632–644.

    Article  PubMed  Google Scholar 

  19. Purdie TG, Henderson E, Lee TY. Functional CT imaging of angiogenesis in rabbit VX2 soft-tissue tumour. Phys Med Biol 2001;46:3161–3175.

    Article  PubMed  CAS  Google Scholar 

  20. Phongkitkarun S, Kobayashi S, Kan Z, Lee TY, Charnsangavej C. Quantification of angiogenesis by functional computed tomography in a Matrigel model in rats. Acad Radiol 2004;11:573–582.

    Article  PubMed  Google Scholar 

  21. Pollard RE, Garcia TC, Stieger SM, Ferrara KW, Sadlowski AR, Wisner ER. Quantitative evaluation of perfusion and permeability of peripheral tumors using contrast-enhanced computed tomography. Invest Radiol 2004;39:340–349.

    Article  PubMed  Google Scholar 

  22. Khanafer K, Vafai K, Kangarlu A. Computational modeling of cerebral diffusion-application to stroke imaging. Magn Reson Imaging 2003;21:651–661.

    Article  PubMed  CAS  Google Scholar 

  23. Hammarberg B, Stalberg E. Novel ideas for fast muscle action potential simulations using the line source model. IEEE Trans Biomed Eng 2004;51:1888–1897.

    Article  PubMed  Google Scholar 

  24. Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 1995;147:9–19.

    PubMed  CAS  Google Scholar 

  25. Lewis JS, Landers RJ, Underwood JCE, Harris AL, Lewis CE. Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol 2000;192:150–158.

    Article  PubMed  CAS  Google Scholar 

  26. Miles KA. Perfusion CT for the assessment of tumour vascularity: which protocol? Br J Radiol 2003;76:S36–S42.

    Article  PubMed  Google Scholar 

  27. Eastwood JD, Provenzale JM, Hurwitz LM, Lee TY. Practical injection-rate CT perfusion imaging: deconvolution-derived hemodynamics in a case of stroke. Neuroradiology 2001;43:223–226.

    Article  PubMed  CAS  Google Scholar 

  28. Konig M. Brain perfusion CT in acute stroke: current status. Eur J Radiol 2003;45(Suppl 1):S11–S22.

    Article  PubMed  Google Scholar 

  29. Jones AF, Misell DL. The problem of error in deconvolution. J Phys A 1970;3:462–472.

    Article  Google Scholar 

  30. Johnson JA. Capillary permeability, extracellular space estimation, and lymph flow. Am J Physiol 1966;211:1261–1263.

    PubMed  CAS  Google Scholar 

  31. Blomley MJ, Coulden R, Bufkin C, Lipton MJ, Dawson P. Contrast bolus dynamic computed tomography for the measurement of solid organ perfusion. Invest Radiol 1993;28(Suppl 5):S72–S77.

    Article  PubMed  Google Scholar 

  32. Miles KA, Kelley BB. CT measurements of capillary permeability within nodal masses: a potential technique for assessing the activity of lymphoma. Br J Radiol 1997;70:74–79.

    PubMed  CAS  Google Scholar 

  33. Dekel Y, Koren R, Kugel V, Livne PM, Gal R. Significance of angiogenesis and microvascular invasion in renal cell carcinoma. Pathol Oncol Res 2002;8:129–132.

    Article  PubMed  Google Scholar 

  34. Zhang X, Yamashita M, Uetsuki H, Kakehi Y. Angiogenesis in renal cell carcinoma: evaluation of microvessel density, vascular endothelial growth factor and matrix metalloproteinases. Int J Urol 2002;9:509–514.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang X, Yamashita M, Uetsuki H, Kakehi Y. Angiogenesis in renal cell carcinoma: evaluation of microvessel density, vascular endothelial growth factor and matrix metalloproteinases. Int J Urol 2002;9:509–514.

    Article  PubMed  CAS  Google Scholar 

  36. Chang SG, Jeon SH, Lee SJ, Choi JM, Kim YW. Clinical significance of urinary vascular endothelial growth factor and microvessel density in patients with renal cell carcinoma. Urology 2001;58:904–908.

    Article  PubMed  CAS  Google Scholar 

  37. Slaton JW, Inoue K, Perrotte P, El-Naggar AK, Swanson DA, Fidler IJ, et al. Expression levels of genes that regulate metastasis and angiogenesis correlate with advanced pathological stage of renal cell carcinoma. Am J Pathol 2001;158:735–743.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Ueda.

About this article

Cite this article

Kaneoya, K., Ueda, T., Suito, H. et al. Functional computed tomography imaging of tumor-induced angiogenesis: preliminary results of new tracer kinetic modeling using a computer discretization approach. Radiat Med 26, 213–221 (2008). https://doi.org/10.1007/s11604-007-0217-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-007-0217-4

Key words

Navigation