Skip to main content
Log in

Scaling properties of the Mw7.0 Samos (Greece), 2020 aftershock sequence

  • Research Article - Special Issue
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

On October 30, 2020, a strong and shallow earthquake (Mw = 7.0) hit Samos, an island on the eastern edge of the Aegean Sea (Greece). The epicenter was located on the north offshore of the Greek island of Samos. The goal of our work is to provide a first analysis of the scaling properties observed in the aftershock sequence as reported until December 31, 2020, as numerous seismic clusters activated. Our analysis is focused on the main of the clusters observed in the East area of the activated fault zone and strongly related with the mainshock’s fault. The aftershock sequence follows the Omori law with a value of p ≈ 1.01 for the main cluster which is remarkably close to a logarithmic evolution. The analysis of interevent times distribution, based on non-extensive statistical physics indicates a system in an anomalous equilibrium with a crossover from anomalous (q > 1) to normal (q = 1) statistical mechanics, as great interevent times approached. A discussion of the crossover observed, is given in terms of superstatistics. In addition, the obtained value q ≈ 1.67 suggests a system with one degree of freedom. Furthermore, a scaling of the migration of aftershock zone as a function of the logarithm of time is discussed in terms of rate strengthening rheology that govern the evolution of afterslip process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ambraseys N (2009) Earthquakes in the Mediterranean and middle east: a multidisciplinary study of seismicity up to 1900. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ariyoshi K, Matsuzawa T, Hasegawa Α (2007a) The key frictional parameters controlling spatial variations in the speed of postseismic-slip propagation on a subduction plate boundary. Earth Planet Sci Lett 256:136–146. https://doi.org/10.1016/j.epsl.2007.01.019

    Article  Google Scholar 

  • Ariyoshi K, Matsuzawa T, Hino R, Hasegawa Α (2007b) Triggered non-similar slip events on repeating earthquake asperities: results from 3D numerical simulations based on a friction law. Geophys Res Lett 34:L02308. https://doi.org/10.1029/2006GL028323

    Article  Google Scholar 

  • Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81:F897

    Google Scholar 

  • Beck C (2001) Dynamical foundations of nonextensive statistical mechanics. Phys Rev Lett 87(18):180–601

    Article  Google Scholar 

  • Beck C (2004) Superstatistics: theory and applications. Continuum Mech Thermodyn 16(3):293–304

    Article  Google Scholar 

  • Beck C (2006) Superstatistical Brownian motion. Prog Theor Phys Suppl 162:29–36

    Article  Google Scholar 

  • Beck C, Cohen EGD (2003) Superstatistics. Phys A 322:267–275

    Article  Google Scholar 

  • Beeler NM, Simpson RW, Hickman SH, Lockner DA (2000) Pore fluid pressure, apparent friction, and Coulomb failure. J Geophys Res 105:25533–25542

    Article  Google Scholar 

  • Caputo R, Pavlides S (2013) The Greek Database of seismogenic sources (GreDaSS), Version 2.0.0: A compilation of potential seismogenic sources (M > 5.5) in the Aegean region. https://doi.org/10.15160/unife/gredass/0200

  • Caputo R, Chatzipetros A, Pavlides S, Sboras S (2012) The Greek database of seismogenic sources (GreDaSS): state-of-the-art for northern Greece. Ann Geophys 55(5):859–894

    Google Scholar 

  • Chatzipetros A, Kiratzi A, Sboras S, Zouros N, Pavlides S (2013) Active faulting in the north eastern Aegean Sea Islands. Tectonophysics 106:597–598. https://doi.org/10.1016/j.tecto.2012.11.026

    Article  Google Scholar 

  • Chelidze T, Vallianatos F, Telesca L (2018) Complexity of seismic time series: measurement and application. Elsevier, Amsterdam

    Google Scholar 

  • Das S, Scholz C (1981) Theory of time-dependent rupture in the Earth. J Geophys Res 86:6039–6051

    Article  Google Scholar 

  • Dieterich JH (1994) A constitutive law for rate of earthquake production and its application to earthquake clustering. J Geophys Res 99:2601–2618

    Article  Google Scholar 

  • Evelpidou N, Pavlopoulos K, Vouvalidis K, Syrides G, Triantaphyllou M, Karkani A, Paraschou T (2019) Holocene palaeogeographical reconstruction and relative sea-level changes in the southeastern part of the island of Samos. Geoscience 351:451–460

    Article  Google Scholar 

  • Eyring H (1935) The activated complex in chemical reactions. J Chem Phys. https://doi.org/10.1063/1.1749604

    Article  Google Scholar 

  • Feltzer KR, Brodsky E (2006) Decay of aftershock density with distance indicates triggering by dynamic stress. Nature 44:735–738

    Article  Google Scholar 

  • Frank WB, Poli P, Perfettini H (2017) Mapping the rheology of the Central Chile subduction zone with aftershocks. Geophys Res Lett. https://doi.org/10.1002/2016GL072288

    Article  Google Scholar 

  • Ganas A, Parsons T (2009) Three-dimensional model of Hellenic Arc deformation and origin of the Cretan uplift. J Geophys Res Solid Earth 114:B06404. https://doi.org/10.1029/2008JB005599

    Article  Google Scholar 

  • Ganas A, Elias P, Briole P, Tsironi V, Valkaniotis S, Escartin J, Karasante I, Efstathiou E (2020) Fault responsible for Samos earthquake identified. Temblor 10

  • Gürer ÖF, Sanğu E, Özburan M, Gürbüz A, Sarica-Filoreau N (2013) Complex basin evolution in the Gökova Gulf region: implications on the Late Cenozoic tectonics of southwest Turkey. Int J Earth Sci. https://doi.org/10.1007/s00531-013-0909-1

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1954) Magnitude and energy of earthquakes. Ann Geofis 9:1–15

    Google Scholar 

  • Hanks T, Wyss M (1972) The use of body wave spectra in the determination of seismic source parameters. Bull Seism Soc Am 62:561–589

    Article  Google Scholar 

  • Harris RA (1998) Introduction to special section: stress triggers, stress shadows, and implications for seismic hazard. J Geophys Res 103–24:347–358

    Google Scholar 

  • Helmstetter A, Sornette D (2002) Diffusion of epicenters of earthquake aftershocks, Omori’s law, and generalized continuous-time random walk models Phys. Rev E 66:061104–061111

    Google Scholar 

  • Henry C, Das S (2001) Aftershock zones of large shallow earthquakes: fault dimensions, aftershock area expansion and scaling relations. Geophys J Int. https://doi.org/10.1046/j.1365-246X.2001.00522.x

    Article  Google Scholar 

  • Ikari MJ, Carpenter BM, Marone C (2016) A microphysical interpretation of rate-and state-dependent friction for fault gouge. Geochem Geophys Geosyst. https://doi.org/10.1002/2016GC006286

    Article  Google Scholar 

  • Ji C, Wald DJ, Helmberger DV (2002) Source description of the 1999 Hector Mine, California earthquake; Part I: Wavelet domain inversion theory and resolution analysis. Bull Seism Soc Am 92–4:1192–1207

    Article  Google Scholar 

  • Kantiranis N, Stamatakis M, Filippidis A, Squires C (2004) The uptake ability of the clinoptilolitic tuffs of Samos Island, Greece. Bull Geol Soc XXXVI:89–96

    Google Scholar 

  • Karakostas VG, Tan O, Kostoglou A, Papadimitriou EE, Bonatis P (2020) Seismotectonic implications of the 2020 Samos, Greece, M7.0 mainshock based on high–resolution aftershocks relocation, source slip model, and previous microearthquake activity. Acta Geophys (Submitted)

  • Kassaras I, Kapetanidis V, Ganas A, Tzanis A, Kosma C, Karakonstantis A, Valkaniotis S, Chailas S, Kouskouna V, Papadimitriou P (2020) The new seismotectonic atlas of Greece (v1.0) and its implementation. Geosciences 10(11):447

    Article  Google Scholar 

  • Kato N (2007) Expansion of aftershock areas caused by propagating post-seismic sliding. Geophys J Int 168:797–808. https://doi.org/10.1111/j.1365-246X.2006.03255.x

    Article  Google Scholar 

  • Kato A, Obara K (2014) Step-like migration of early aftershocks following the 2007 Mw 6.7 Noto-Hanto earthquake, Japan. Geophys Res Lett. https://doi.org/10.1002/2014GL060427

    Article  Google Scholar 

  • Kato A, Igarashi T, Obara K (2014) Detection of a hidden Boso slow slip event immediately after the 2011 Mw9.0 Tohoku-Oki earthquake, Japan. Geophys Res Lett. https://doi.org/10.1002/2014GL061053

    Article  Google Scholar 

  • Kilb D, Gomberg J, Bodin P (2002a) Triggering of earthquake aftershocks by dynamic stresses. Nature 408:570–574

    Article  Google Scholar 

  • Kilb D, Gomberg J, Bodin P (2002b) Aftershock triggering by complete Coulomb stress changes. JGR Solid Earth. https://doi.org/10.1029/2001JB000202

    Article  Google Scholar 

  • King GC, Stein R, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am 84(3):935–953

    Google Scholar 

  • Kiratzi Α (2002) Stress tensor inversion along the westernmost North Anatolian Fault Zone and its continuation into the North Aegean Sea. Geophys J Int 151:360–376. https://doi.org/10.1046/j.1365-246X.2002.01753.x

    Article  Google Scholar 

  • Kiratzi A (2014) Mechanisms of earthquakes in Aegean. In: Beer M, Kougioumtzoglou IA, Patelli E, Siu-Kui AI (eds) Encyclopedia of earthquake engineering. Springer, Berlin. https://doi.org/10.1007/978-3-642-36197-5_299-1

    Chapter  Google Scholar 

  • Kouskouna V, Sakkas G (2013) The University of Athens hellenic macroseismic database (HMDB.UoA): historical earthquakes. J Seismol 17(4):1253–1280

    Article  Google Scholar 

  • Kurtulus C, Doğan B, Sertçelik F, Canbay MM, Küçük HM (2009) Determination of the tectonic evolution of the Edremit Gulf Based on seismic reflection studies. Mar Geophys Res. https://doi.org/10.1007/s11001-009-9072-2

    Article  Google Scholar 

  • Lekkas E, Mavroulis S, Gogou Μ, Papadopoulos GA, Triantafyllou I, Katsetsiadou KN, Kranis H, Skourtsos E, Carydis P, Voulgaris N, Papadimitriou P, Kapetanidis V, Karakonstantis A, Spingos I, Kouskouna V, Kassaras I, Kaviris G, Pavlou K, Sakkas V, Karatzetzou A. Evelpidou N. Karkani E. Kampolis I, Nomikou P, Lambridou D, Krassakis P, Foumelis M, Papazachos C, Karavias A, Bafi D, Gatsios T, Markogiannaki O, Parcharidis I, Ganas A, Tsironi V, Karasante I, Galanakis D, Kontodimos K, Sakellariou D, Theodoulidis N, Karakostas C, Lekidis V, Makra K, Margaris V, Morfidis K, Papaioannou C, Rovithis E, Salonikios T, Kourou A, Manousaki M, Thoma T, Κarveleas N (2020) The October 30, 2020 M 6.9 Samos (Greece) earthquake. Newsletter of Environmental, Disaster and Crises Management Strategies, 21, ISSN 2653‐9454, https://doi.org/10.13140/RG.2.2.13630.10561

  • Lippiello E, de Arcangelis L, Godano C (2009) Role of static stress diffusion in the spatiotemporal organization of aftershocks. Phys Rev Lett 103:038501–038511

    Article  Google Scholar 

  • Lippiello E, Giacco F, Marzocchi W, Godano C, de Arcangelis L (2015) Mechanical origin of aftershocks. Sci Rep 5:15560

    Article  Google Scholar 

  • Lippiello E, Cirillo A, Godano C, Papadimitriou E, Karakostas V (2016) Real-time forecast of aftershocks from a single seismic station signal. Geophys Res Lett 43(12):6252–6258

    Article  Google Scholar 

  • Lippiello E, Cirillo A, Godano C, Papadimitriou E, Karakostas V (2019) Post seismic catalog incompleteness and aftershock forecasting. Geosciences 9(8):355

    Article  Google Scholar 

  • Makropoulos K, Kaviris G, Kouskouna V (2012) An extended earthquake catalogue for Greece and adjacent areas since 1900, enriched with the Mw addition. Nat Hazards Earth Syst Sci 12:1–6

    Article  Google Scholar 

  • Margaris BN, Hatzidimitriou PM (2002) Source spectral scaling and stress release estimates using strong-motion records in Greece. Bull Seismol Soc Am 92:1040–1059

    Article  Google Scholar 

  • Mayorga EF, Sánchez JJ (2016) Modelling of Coulomb stress changes during the great (Mw=8.8) 1906 Colombia-Ecuador earthquake. J South Am Earth Sci 70:268–278. https://doi.org/10.1016/j.jsames.2016.05.009

    Article  Google Scholar 

  • McKenzie D (1978) Active tectonics of the Alpine-Himalayan belt: The Aegean Sea and surrounding regions. Geophys J Int 55:217–254. https://doi.org/10.1007/s10950-013-9390-3

    Article  Google Scholar 

  • Meng X, Peng Z (2016) Increasing lengths of aftershock zones with depths of moderate-size earthquakes on the San Jacinto Fault suggests triggering of deep creep in the middle crust. Geophys J Int 204:250–261

    Article  Google Scholar 

  • Mercier JL, Sorel D, Vergely P, Simeakis K (1989) Extensional tectonic regimes in the Aegean basins during the Cenozoic. Basin Res 2:49–71

    Article  Google Scholar 

  • Obana K, Takahashi T, No T, Kaiho Y, Kodaira S, Yamashita M et al (2014) Distribution and migration of aftershocks of the 2010 Mw7.4 Ogasawara Islands intraplate normal-faulting earthquake related to a fracture zone in the Pacific plate. Geochem Geophys Geosyst 15:1363–1373

    Article  Google Scholar 

  • Ogata Y, Katsura K (2006) Immediate and updated forecasting of aftershock hazard. Geophys Res Lett 33:L10305. https://doi.org/10.1029/2006GL025888

    Article  Google Scholar 

  • Omori F (1894) On the after-shocks of earthquakes. J Colloid Sci 7:111–200

    Google Scholar 

  • Papadimitriou E, Karakostas V, Mesimeri M, Chouliaras G, Kourouklas Ch (2017) The M6.7 17 November 2015 Lefkada (Greece) earthquake: structural interpretation by means of aftershock analysis. Pure Appl Geophys 174:3869–3888. https://doi.org/10.1007/s00024-017-1601-3,2017

    Article  Google Scholar 

  • Papadimitriou P, Kapetanidis V, Karakonstantis A, Spingos I, Kassaras I, Sakkas V, Kouskouna V, Karatzetzou A, Pavlou K, Kaviris G, Voulgaris N (2020) First results on the M = 6.9 Samos earthquake of 30 October 2020. Bull Geol Soc Greece 56(1):251–279. https://doi.org/10.12681/bgsg.25359

    Article  Google Scholar 

  • Papazachos BC, Papazachou CB (2003) The earthquakes of Greece. Ziti, Thessaloniki

    Google Scholar 

  • Perfettini H, Avouac JP (2004) Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake. Taiwan J Geophys Res 109:B02304

    Google Scholar 

  • Perfettini H, Frank WB, Marsan D, Bouchon M (2018) A model of aftershock migration driven by afterslip. Geophys Res Lett. https://doi.org/10.1002/2017GL076287

    Article  Google Scholar 

  • Rice J, Cleary M (1976) Some basic stress diffusion solutions for fluid saturated elastic porous media with compressible constituents. Rev Geophys 14:227–241

    Article  Google Scholar 

  • Sboras S (2012) The greek database of seismogenic sources: seismotectonic implications for North Greece. Desertation, University of Ferrara

  • Scholz C (1968) Microfractures, aftershocks, and seismicity. Bull Seismol Soc Am 58:1117–1130

    Google Scholar 

  • Shcherbakov R, Yacovlev G, Turcotte DL, Rundle JB (2005a) Model for distribution of aftershocks interoccurrence times. Phys Rev Lett 95:218501

    Article  Google Scholar 

  • Shcherbakov R, Turcotte DL, Rundle JB (2005b) Aftershock statistics. Pure Appl Geophys 162:1051–1076. https://doi.org/10.1007/s00024-004-2661-8

    Article  Google Scholar 

  • Stamatakis M (1989) Authigenic silicates and silica polymorphs in the Miocene saline-alkaline deposits of the Karlovassi basin, Samos Island, Greece. Econ Geol 84:788–798

    Article  Google Scholar 

  • Stein RS (1999) The role of stress transfer in earthquake occurrence. Nature 402(6762):605–609

    Article  Google Scholar 

  • Stein RS, King GCP, Lin J (1994) Stress triggering of the 1994 M=6.7 Northridge, California, earthquake by its predecessors. Science 265:1432–1435

    Article  Google Scholar 

  • Tan O, Papadimitriou EE, Pabucçu Z et al (2014) A detailed analysis of microseismicity in Samos and Kusadasi (Eastern Aegean Sea) areas. Acta Geophys 62:1283–1309

    Article  Google Scholar 

  • Tang CC, Lin CH, Peng Z (2014) Spatial-temporal evolution of early aftershocks following the 2010 ML6.4 Jiashian earthquake in southern Taiwan. Geophys J Int 199:1772–1783

    Article  Google Scholar 

  • Telesca L (2012) Maximum likelihood estimation of the nonextensive parameters of the earthquake cumulative magnitude distribution. Bull Seismol Soc Am 102:886–891

    Article  Google Scholar 

  • Toda S, Stein RS (2003) Toggling of seismicity by the 1997 Kagoshima earthquake couplet: A demonstration of time-dependent stress transfer. J Geophys Res 108:2567. https://doi.org/10.1029/2003JB002527

    Article  Google Scholar 

  • Toda S, Stein RS, Reasenberg PA, Dieterich JH, Yoshida A (1998) Stress transferred by the 1995, Mw = 6.9 Kobe, Japan, shock: effect on aftershocks and future earthquake probabilities. J Geophys Res 103(B10):24543–24565

    Article  Google Scholar 

  • Toda S, Stein RS, Richards-Dinger K, Bozkurt SB (2005) Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer. J Geophys Res 110(B5):B05S16. https://doi.org/10.1029/2004JB003415

    Article  Google Scholar 

  • Toda S, Stein RS, Sevilgen V, Lin J (2011) Coulomb 3.3 Graphic‐rich deformation and stress‐change software for earthquake, tectonic, and volcano research and teaching‐user guide. U.S. Geological Survey Open‐File Report 2011‐1060, pp. 63. http://pubs.usgs.gov/of/2011/1060/

  • Tsallis C (2009a) Introduction to nonextensive statistical mechanics: approaching a complex world. Springer, Berlin

    Google Scholar 

  • Tsallis C (2009b) Nonadditive entropy and nonextensive statistical mechanics—An overview after 20 years. Braz J Phys 39:337–356

    Article  Google Scholar 

  • Tur H, Yaltırak C, Elitezb İ, Sarıkavakc KT (2015) Pliocene-Quaternary tectonic evolution of the Gulf of Gökova, southwest Turkey. Tectonophysics. https://doi.org/10.1016/j.tecto.2014.11.008

    Article  Google Scholar 

  • Utsu T (1961) A statistical study on the occurrence of aftershocks. Geo Phys 30:521–605

    Google Scholar 

  • Utsu T, Ogata Y, Matsu’ura RS (1995) The centenary of the Omori formula for a decay law of aftershock activity. J Phys Earth 43:1–33

    Article  Google Scholar 

  • Vallianatos F (2011) A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field. Phys A 390:1773–1778

    Article  Google Scholar 

  • Vallianatos F, Sammonds P (2013) Evidence of non-extensive statistical physics of the lithospheric instability approaching the 2004 Sumatran-Andaman and 2011 Honshu mega-earthquakes. Tectonophysics. https://doi.org/10.1016/j.tecto.2013.01.009

    Article  Google Scholar 

  • Vallianatos F, Michas G, Papadakis G, Sammonds P (2012) A non-extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece). Acta Geophys 60:758–768

    Article  Google Scholar 

  • Vallianatos F, Karakostas V, Papadimitriou E (2014) A Non-extensive statistical physics view in the spatiotemporal properties of the 2003 (Mw62) Lefkada, Ionian Island Greece, Aftershock Sequence. Pure Appl Geophys 171(7):1343–1534. https://doi.org/10.1007/s00024-013-0706-6

    Article  Google Scholar 

  • Vallianatos F, Papadakis G, Michas G (2016a) Generalized statistical mechanics approaches to earthquakes and tectonics. Proc R Soc A 472–497

  • Vallianatos F, Michas G, Papadakis G (2016) A description of seismicity based on non-extensive statistical physics: a review. In: D’Amico S (ed) Earthquakes and their impact on society. Springer, Heidelberg, pp 1–42

    Google Scholar 

  • Vallianatos F, Michas G, Papadakis G (2018) Nonextensive statistical seismology: an overview. In: Chelidze T, Vallianatos F, Telesca L (eds) Complexity of seismic time series. Elsevier, Amsterdam, pp 25–60

    Chapter  Google Scholar 

  • Vassilopoulos A, Evelpidou N, Tziritis E, Boglis A (2008) Wetlands the pattern of Samos Island. University of Athens

    Google Scholar 

  • Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72(3):373–382

    Article  Google Scholar 

  • Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western US and Japan. Bull Seism Soc Am 90:859–869

    Article  Google Scholar 

  • Wu J, Hu Q, Li W, Lei D (2016) Study on Coulomb stress triggering of the April 2015 M7.8 Nepal earthquake sequence. Int J Geophys. https://doi.org/10.1155/2016/7378920

    Article  Google Scholar 

  • Xiong X, Shan B, Zhou YM, Wei SJ, Li YD, Wang R, Zheng Y (2017) Coulomb stress transfer and accumulation on the Sagaing Fault, Myanmar, over the past 110 years and its implications for seismic hazard. Geophys Res Lett. https://doi.org/10.1002/2017GL072770

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support of this work by the project “HELPOS – Hellenic System for Lithosphere Monitoring” (MIS 5002697) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund). Thanks are given to two anonymous reviewers for their constructive remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippos Vallianatos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by the Guest Editors: Ramon Zuñiga, Eleftheria Papadimitriou, Vassilios Karakostas and Onur Tan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallianatos, F., Pavlou, K. Scaling properties of the Mw7.0 Samos (Greece), 2020 aftershock sequence. Acta Geophys. 69, 1067–1084 (2021). https://doi.org/10.1007/s11600-021-00579-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-021-00579-5

Keywords

Navigation