Skip to main content
Log in

DNA Damage-driven Inflammatory Cytokines: Reprogramming of Tumor Immune Microenvironment and Application of Oncotherapy

  • Review Article
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

DNA damage occurs across tumorigenesis and tumor development. Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orchestrate the tumor immune microenvironment (TIME) and dominate tumor progression. Accumulating evidence documents that multiple signaling pathways, including cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) and ataxia telangiectasia-mutated protein/ataxia telangiectasia and Rad3-related protein (ATM/ATR), are activated downstream of DNA damage and they are associated with the secretion of diverse cytokines. These cytokines possess multifaced functions in the anti-tumor immune response. Thus, it is necessary to deeply interpret the complex TIME reshaped by damaged DNA and tumor-derived cytokines, critical for the development of effective tumor therapies. This manuscript comprehensively reviews the relationship between the DNA damage response and related cytokines in tumors and depicts the dual immunoregulatory roles of these cytokines. We also summarize clinical trials targeting signaling pathways and cytokines associated with DNA damage and provide future perspectives on emerging technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonapace L, Coissieux MM, Wyckoff J, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature, 2014,515(7525):130–133

    Article  CAS  PubMed  Google Scholar 

  2. M K PK, Shyama SK, D’Costa A, et al. Evaluation of DNA damage induced by gamma radiation in gill and muscle tissues of Cyprinus carpio and their relative sensitivity. Ecotoxicol Environ Saf, 2017,144:166–170

    Article  PubMed  Google Scholar 

  3. Fu D, Calvo JA, Samson LD. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer, 2012,12(2):104–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xiaofei E, Kowalik TF. The DNA damage response induced by infection with human cytomegalovirus and other viruses. Viruses, 2014,6(5):2155–2185

    Article  CAS  PubMed  Google Scholar 

  5. Papamichos-Chronakis M, Peterson CL. Chromatin and the genome integrity network. Nat Rev Genet, 2013,14(1):62–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Romei C, Elisei R. A Narrative Review of Genetic Alterations in Primary Thyroid Epithelial Cancer. Int J Mol Sci, 2021,22(4):1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marti TM, Fleck O. DNA repair nucleases. Cell Mol Life Sci, 2004,61(3):336–354

    Article  CAS  PubMed  Google Scholar 

  8. Greten FR, Grivennikov SI. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity, 2019,51(1):27–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Salem ML, Attia ZI, Galal SM. Acute inflammation induces immunomodulatory effects on myeloid cells associated with anti-tumor responses in a tumor mouse model. J Adv Res, 2016,7(2):243–253

    Article  CAS  PubMed  Google Scholar 

  10. Al-Kadhimi Z, Callahan M, Fehniger T, et al. Enrichment of innate immune cells from PBMC followed by triple cytokine activation for adoptive immunotherapy. Int Immunopharmacol, 2022,113(Pt A):109387

    Article  CAS  PubMed  Google Scholar 

  11. Ben-Baruch A. Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol, 2006,16(1):38–52

    Article  CAS  PubMed  Google Scholar 

  12. Kundu JK, Surh YJ. Inflammation: gearing the journey to cancer. Mutat Res, 2008,659(1–2):15–30

    Article  CAS  PubMed  Google Scholar 

  13. Cai W, Kerner ZJ, Hong H, et al. Targeted Cancer Therapy with Tumor Necrosis Factor-Alpha. Biochem Insights, 2008,2008:15–21

    PubMed  Google Scholar 

  14. Guo Y, Xu F, Lu T, et al. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev, 2012,38(7):904–910

    Article  CAS  PubMed  Google Scholar 

  15. Neuzillet C, Tijeras-Raballand A, Cohen R, et al. Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther, 2015,147:22–31

    Article  CAS  PubMed  Google Scholar 

  16. Wei J, Ma L, Lai YH, et al. Bazedoxifene as a novel GP130 inhibitor for Colon Cancer therapy. J Exp Clin Cancer Res, 2019,38(1):63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Macheret M, Halazonetis TD. DNA replication stress as a hallmark of cancer. Annu Rev Pathol, 2015,10:425–448

    Article  CAS  PubMed  Google Scholar 

  18. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol, 2010,11(3):220–228

    Article  CAS  PubMed  Google Scholar 

  19. Bhat AA, Nisar S, Singh M, et al. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy. Cancer Commun (Lond), 2022,42(8):689–715

    Article  PubMed  Google Scholar 

  20. Hamperl S, Bocek MJ, Saldivar JC, et al. Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses. Cell, 2017,170(4):774–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kato K, Omura H, Ishitani R, et al. Cyclic GMP-AMP as an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Annu Rev Biochem, 2017,86:541–566

    Article  CAS  PubMed  Google Scholar 

  22. Gao P, Ascano M, Wu Y, et al. Cyclic [G(2’,5’)pA(3’,5’) p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell, 2013,153(5):1094–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature, 2008,455(7213):674–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang C, Shang G, Gui X, et al. Structural basis of STING binding with and phosphorylation by TBK1. Nature, 2019,567(7748):394–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tanaka Y, Chen ZJ. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal, 2012,5(214):ra20

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang C, Bachu M, Du Y, et al. CXCL4 synergizes with TLR8 for TBK1-IRF5 activation, epigenomic remodeling and inflammatory response in human monocytes. Nat Commun, 2022,13(1):3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu N, Xu X, Qi G, et al. Ctenopharyngodon idella TBK1 activates innate immune response via IRF7. Fish Shellfish Immunol, 2018,80:521–527

    Article  CAS  PubMed  Google Scholar 

  28. Li X, Song D, Chen Y, et al. NSD2 methylates AROS to promote SIRT1 activation and regulates fatty acid metabolism-mediated cancer radiotherapy. Cell Rep, 2023,42(10):113–126

    Article  Google Scholar 

  29. Tao J, Zhou X, Jiang Z. cGAS-cGAMP-STING: The three musketeers of cytosolic DNA sensing and signaling. IUBMB life, 2016,68(11):858–870

    Article  CAS  PubMed  Google Scholar 

  30. Guo Q, Chen X, Chen J, et al. STING promotes senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the NF-κB signaling pathway. Cell Death Dis, 2021,12(1):13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol, 2004,25(6):280–288

    Article  CAS  PubMed  Google Scholar 

  32. Sun SC. Non-canonical NF-κB signaling pathway. Cell Res, 2011,21(1):71–85

    Article  CAS  PubMed  Google Scholar 

  33. Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene, 2006,25(51):6680–6684

    Article  CAS  PubMed  Google Scholar 

  34. Kang C, Xu Q, Martin TD, et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science, 2015,349(6255):aaa5612

    Article  PubMed  PubMed Central  Google Scholar 

  35. Qiao W, Huang Y, Bian Z, et al. Lipopolysaccharide-induced DNA damage response activates nuclear factor κB signalling pathway via GATA4 in dental pulp cells. Int Endod J, 2019,52(12):1704–1715

    Article  CAS  PubMed  Google Scholar 

  36. Hinz M, Stilmann M, Arslan S Ç, et al. A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-κB activation. Mol Cell, 2010,40(1):63–74

    Article  CAS  PubMed  Google Scholar 

  37. Fang L, Choudhary S, Zhao Y, et al. ATM regulates NF-κB-dependent immediate-early genes via RelA Ser 276 phosphorylation coupled to CDK9 promoter recruitment. Nucleic Acids Res, 2014,42(13):8416–8432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao M, Wang Y, Li L, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics, 2021,11(4):1845–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shafman T, Khanna KK, Kedar P, et al. Interaction between ATM protein and c-Abl in response to DNA damage. Nature, 1997,387(6632):520–523

    Article  CAS  PubMed  Google Scholar 

  40. Liu X, Rong F, Tang J, et al. Repression of p53 function by SIRT5-mediated desuccinylation at Lysine 120 in response to DNA damage. Cell Death Differ, 2022,29(4):722–736

    Article  CAS  PubMed  Google Scholar 

  41. Tengesdal IW, Dinarello A, Powers NE, et al. Tumor NLRP3-Derived IL-1β Drives the IL-6/STAT3 Axis Resulting in Sustained MDSC-Mediated Immunosuppression. Front Immunol, 2021,12:661323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mantovani A, Dinarello CA, Molgora M, et al. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity, 2019,50(4):778–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fahey E, Doyle SL. IL-1 Family Cytokine Regulation of Vascular Permeability and Angiogenesis. Front Immunol, 2019,10:1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu C, Xia Y, Zhang BW, et al. Macrophages facilitate tumor cell PD-L1 expression via an IL-1β-centered loop to attenuate immune checkpoint blockade. MedComm (2020), 2023,4(2):e242

    CAS  PubMed  Google Scholar 

  45. Dammeijer F, van Gulijk M, Mulder EE, et al. The PD-1/PD-L1-Checkpoint Restrains T cell Immunity in Tumor-Draining Lymph Nodes. Cancer Cell, 2020,38(5):685–700

    Article  CAS  PubMed  Google Scholar 

  46. Xu Y, Song G, Xie S, et al. The roles of PD-1/PD-L1 in the prognosis and immunotherapy of prostate cancer. Mol Ther, 2021,29(6):1958–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rose John S, Schooltink H. Cytokines are a therapeutic target for the prevention of inflammation-induced cancers. Recent Results Cancer Res, 2007,174:57–66

    Article  CAS  PubMed  Google Scholar 

  48. Bromberg JF, Wrzeszczynska MH, Devgan G, et al. Stat3 as an oncogene. Cell, 1999,98(3):295–303

    Article  CAS  PubMed  Google Scholar 

  49. Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol, 2018,15(4):234–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matsui T, Kinoshita T, Hirano T, et al. STAT3 down-regulates the expression of cyclin D during liver development. J Biol Chem, 2002,277(39):36167–36173

    Article  CAS  PubMed  Google Scholar 

  51. Yar Saglam AS, Alp E, Elmazoglu Z, et al. Treatment with cucurbitacin B alone and in combination with gefitinib induces cell cycle inhibition and apoptosis via EGFR and JAK/STAT pathway in human colorectal cancer cell lines. Hum Exp Toxicol, 2016,35(5):526–543

    Article  CAS  PubMed  Google Scholar 

  52. Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol, 2018,18(12):773–789

    Article  CAS  PubMed  Google Scholar 

  53. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol, 2014,6(10):a016295

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li D, Xie K, Zhang L, et al. Dual blockade of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) exhibits potent anti-angiogenic effects. Cancer Lett, 2016,377(2):164–173

    Article  CAS  PubMed  Google Scholar 

  55. Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol, 2008,8(5):337–348

    Article  CAS  PubMed  Google Scholar 

  56. Weber R, Riester Z, Hüser L, et al. IL-6 regulates CCR5 expression and immunosuppressive capacity of MDSC in murine melanoma. J Immunother Cancer, 2020,8(2):e000949

    Article  PubMed  PubMed Central  Google Scholar 

  57. Magidey-Klein K, Cooper TJ, Kveler K, et al. IL-6 contributes to metastatic switch via the differentiation of monocytic-dendritic progenitors into prometastatic immune cells. J Immunother Cancer, 2021,9(6):e002856

    Article  PubMed  PubMed Central  Google Scholar 

  58. iang Z, Liao R, Lv J, et al. IL-6 trans-signaling promotes the expansion and anti-tumor activity of CAR T cells. Leukemia, 2021,35(5):1380–1391

    Article  Google Scholar 

  59. Qian BZ, Li J, Zhang H, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature, 2011,475(7355):222–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang Z, Li H, Wang W, et al. CCL2/CCR2 Axis Promotes the Progression of Salivary Adenoid Cystic Carcinoma via Recruiting and Reprogramming the Tumor-Associated Macrophages. Front Oncol, 2019,9:231

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yang H, Zhang Q, Xu M, et al. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis. Mol Cancer, 2020,19(1):41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Flores-Toro JA, Luo D, Gopinath A, et al. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc Natl Acad Sci U S A, 2020,117(2):1129–1138

    Article  CAS  PubMed  Google Scholar 

  63. Epstein RJ. The CXCL12-CXCR4 chemotactic pathway as a target of adjuvant breast cancer therapies. Nat Rev Cancer, 2004,4(11):901–909

    Article  CAS  PubMed  Google Scholar 

  64. Heidegger I, Fotakis G, Offermann A, et al. Comprehensive characterization of the prostate tumor microenvironment identifies CXCR4/CXCL12 crosstalk as a novel antiangiogenic therapeutic target in prostate cancer. Mol Cancer, 2022,21(1):132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wald O, Shapira OM, Izhar U. CXCR4/CXCL12 axis in non small cell lung cancer (NSCLC) pathologic roles and therapeutic potential. Theranostics, 2013,3(1):26–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Song ZY, Gao ZH, Chu JH, et al. Downregulation of the CXCR4/CXCL12 axis blocks the activation of the Wnt/β-catenin pathway in human colon cancer cells. Biomed Pharmacother, 2015,71:46–52

    Article  CAS  PubMed  Google Scholar 

  67. Yin X, Liu Z, Zhu P, et al. CXCL12/CXCR4 promotes proliferation, migration, and invasion of adamantinomatous craniopharyngiomas via PI3K/AKT signal pathway. J Cell Biochem, 2019,120(6):9724–9736

    Article  CAS  PubMed  Google Scholar 

  68. Zhou W, Guo S, Liu M, et al. Targeting CXCL12/CXCR4 Axis in Tumor Immunotherapy. Curr Med Chem, 2019,26(17):3026–3041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ziegler ME, Hatch MMS, Wu N, et al. mTORC2 mediates CXCL12-induced angiogenesis. Angiogenesis, 2016,19(3):359–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liang Z, Brooks J, Willard M, et al. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochem Biophys Res Commun, 2007,359(3):716–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lecavalier-Barsoum M, Chaudary N, Han K, et al. Targeting CXCL12/CXCR4 and myeloid cells to improve the therapeutic ratio in patient-derived cervical cancer models treated with radio-chemotherapy. Br J Cancer, 2019,121(3):249–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pan J, Mestas J, Burdick MD, et al. Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Mol Cancer, 2006,5:56

    Article  PubMed  PubMed Central  Google Scholar 

  73. Taki M, Abiko K, Baba T, et al. Snail promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells via CXCR2 ligand upregulation. Nat Commun, 2018,9(1):1685

    Article  PubMed  PubMed Central  Google Scholar 

  74. Garg B, Giri B, Modi S, et al. NFκB in Pancreatic Stellate Cells Reduces Infiltration of Tumors by Cytotoxic T Cells and Killing of Cancer Cells, via Up-regulation of CXCL12. Gastroenterology, 2018,155(3):880–891

    Article  CAS  PubMed  Google Scholar 

  75. Kohara H, Omatsu Y, Sugiyama T, et al. Development of plasmacytoid dendritic cells in bone marrow stromal cell niches requires CXCL12-CXCR4 chemokine signaling. Blood, 2007,110(13):4153–4160

    Article  CAS  PubMed  Google Scholar 

  76. de Rham C, Ferrari-Lacraz S, Jendly S, et al. The proinflammatory cytokines IL-2, IL-15 and IL-21 modulate the repertoire of mature human natural killer cell receptors. Arthritis Res Ther, 2007,9(6):R125

    Article  PubMed  PubMed Central  Google Scholar 

  77. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol, 2003,3(2):133–146

    Article  CAS  PubMed  Google Scholar 

  78. Renavikar PS, Sinha S, Brate AA, et al. IL-12-Induced Immune Suppressive Deficit During CD8+ T-Cell Differentiation. Front Immunol, 2020,11:568630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schurich A, Raine C, Morris V, et al. The role of IL-12/23 in T cell-related chronic inflammation: implications of immunodeficiency and therapeutic blockade. Rheumatology (Oxford), 2018,57(2):246–254

    Article  CAS  PubMed  Google Scholar 

  80. Garris CS, Arlauckas SP, Kohler RH, et al. Successful Anti-PD-1 Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving the Cytokines IFN-γ and IL-12. Immunity, 2018,49(6):1148–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Albini A, Brigati C, Ventura A, et al. Angiostatin anti-angiogenesis requires IL-12: the innate immune system as a key target. J Transl Med, 2009,7:5

    Article  PubMed  PubMed Central  Google Scholar 

  82. Abdolvahab MH, Darvishi B, Zarei M, et al. Interferons: role in cancer therapy. Immunotherapy, 2020,12(11):833–855

    Article  CAS  PubMed  Google Scholar 

  83. Musella M, Guarracino A, Manduca N, et al. Type I IFNs promote cancer cell stemness by triggering the epigenetic regulator KDM1B. Nat Immunol, 2022,23(9):1379–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Müller L, Aigner P, Stoiber D. Type I Interferons and Natural Killer Cell Regulation in Cancer. Front Immunol, 2017,8:304

    Article  PubMed  PubMed Central  Google Scholar 

  85. Jiang W, Zhang C, Tian Z, et al. hIFN-α gene modification augments human natural killer cell line anti-human hepatocellular carcinoma function. Gene Ther, 2013,20(11):1062–1069

    Article  CAS  PubMed  Google Scholar 

  86. Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, et al. Direct effects of type I interferons on cells of the immune system. Clin Cancer Res, 2011,17(9):2619–2627

    Article  CAS  PubMed  Google Scholar 

  87. Olalekan SA, Cao Y, Hamel KM, et al. B cells expressing IFN-γ suppress Treg-cell differentiation and promote autoimmune experimental arthritis. Eur J Immunol, 2015,45(4):988–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sisirak V, Faget J, Gobert M, et al. Impaired IFN-α production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression. Cancer Res, 2012,72(20):5188–5197

    Article  CAS  PubMed  Google Scholar 

  89. Chen J, Cao Y, Markelc B, et al. Type I IFN protects cancer cells from CD8+ T cell-mediated cytotoxicity after radiation. J Clin Invest, 2019,129(10):4224–4238

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cheng N, Watkins-Schulz R, Junkins RD, et al. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight, 2018,3(22):e120638

    Article  PubMed  PubMed Central  Google Scholar 

  91. Yadav MC, Burudi EME, Alirezaei M, et al. IFN-gamma-induced IDO and WRS expression in microglia is differentially regulated by IL-4. Glia, 2007,55(13):1385–1396

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pinci F, Gaidt MM, Jung C, et al. Tumor necrosis factor is a necroptosis-associated alarmin. Front Immunol, 2022,13:1074440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nooijen PT, Manusama ER, Eggermont AM, et al. Synergistic effects of TNF-alpha and melphalan in an isolated limb perfusion model of rat sarcoma: a histopathological, immunohistochemical and electron microscopical study. Br J Cancer, 1996,74(12):1908–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. van der Veen AH, de Wilt JH, Eggermont AM, et al. TNF-alpha augments intratumoural concentrations of doxorubicin in TNF-alpha-based isolated limb perfusion in rat sarcoma models and enhances anti-tumour effects. Br J Cancer, 2000,82(4):973–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Spriggs D, Imamura K, Rodriguez C, et al. Induction of tumor necrosis factor expression and resistance in a human breast tumor cell line. Proc Natl Acad Sci U S A, 1987,84(18):6563–6566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Karayiannakis AJ, Syrigos KN, Polychronidis A, et al. Serum levels of tumor necrosis factor-alpha and nutritional status in pancreatic cancer patients. Anticancer Res, 2001,21(2B):1355–1358

    CAS  PubMed  Google Scholar 

  97. Moore RJ, Owens DM, Stamp G, et al. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat Med, 1999,5(7):828–831

    Article  CAS  PubMed  Google Scholar 

  98. Naylor MS, Malik ST, Stamp GW, et al. In situ detection of tumour necrosis factor in human ovarian cancer specimens. Eur J Cancer, 1990,26(10):1027–1030

    Article  CAS  PubMed  Google Scholar 

  99. Cruceriu D, Baldasici O, Balacescu O, et al. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr), 2020,43(1):1–18

    Article  CAS  PubMed  Google Scholar 

  100. Schröder SK, Asimakopoulou A, Tillmann S, et al. TNF-α controls Lipocalin-2 expression in PC-3 prostate cancer cells. Cytokine, 2020,135:155214

    Article  PubMed  Google Scholar 

  101. Zhang GP, Yue X, Li SQ. Cathepsin C Interacts with TNF-α/p38 MAPK Signaling Pathway to Promote Proliferation and Metastasis in Hepatocellular Carcinoma. Cancer Res Treat, 2020,52(1):10–23

    Article  CAS  PubMed  Google Scholar 

  102. Liu Y, Gao Y, Lin T. Expression of interleukin-1 (IL-1), IL-6, and tumor necrosis factor-α (TNF-α) in non-small cell lung cancer and its relationship with the occurrence and prognosis of cancer pain. Ann Palliat Med, 2021,10(12):12759–12766

    Article  PubMed  Google Scholar 

  103. Edamitsu S, Matsukawa A, Ohkawara S, et al. Role of TNF alpha, IL-1, and IL-1ra in the mediation of leukocyte infiltration and increased vascular permeability in rabbits with LPS-induced pleurisy. Clin Immunol Immunopathol, 1995,75(1):68–74

    Article  CAS  PubMed  Google Scholar 

  104. Watanabe Y, Fukuda T, Hayashi C, et al. Extracellular vesicles derived from GMSCs stimulated with TNF-α and IFN-α promote M2 macrophage polarization via enhanced CD73 and CD5L expression. Sci Rep, 2022,12(1):13344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kulbe H, Thompson R, Wilson JL, et al. The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res, 2007,67(2):585–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gordon G J, Mani M, Mukhopadhyay L, et al. Inhibitor of apoptosis proteins are regulated by tumour necrosis factor-alpha in malignant pleural mesothelioma. J Pathol, 2007,211(4):439–446

    Article  CAS  PubMed  Google Scholar 

  107. Stathopoulos GT, Kollintza A, Moschos C, et al. Tumor necrosis factor-alpha promotes malignant pleural effusion. Cancer Res, 2007,67(20):9825–9834

    Article  CAS  PubMed  Google Scholar 

  108. Lang FM, Lee KMC, Teijaro JR, et al. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nat Rev Immunol, 2020,20(8):507–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhan Y, Lew AM, Chopin M. The Pleiotropic Effects of the GM-CSF Rheostat on Myeloid Cell Differentiation and Function: More Than a Numbers Game. Front Immunol, 2019,10:2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rosales C. Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Front Physiol, 2018,9:113

    Article  PubMed  PubMed Central  Google Scholar 

  111. Celebi H, Akan H, Akçağlayan E, et al. Febrile neutropenia in allogeneic and autologous peripheral blood stem cell transplantation and conventional chemotherapy for malignancies. Bone Marrow Transplant, 2000,26(2):211–214

    Article  CAS  PubMed  Google Scholar 

  112. Lemieux B, Tartas S, Traulle C, et al. Rituximab-related late-onset neutropenia after autologous stem cell transplantation for aggressive non-Hodgkin’s lymphoma. Bone Marrow Transplant, 2004,33(9):921–923

    Article  CAS  PubMed  Google Scholar 

  113. Ribechini E, Hutchinson JA, Hergovits S, et al. Novel GM-CSF signals via IFN-γR/IRF-1 and AKT/mTOR license monocytes for suppressor function. Blood Adv, 2017,1(14):947–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Morales JK, Kmieciak M, Knutson KL, et al. GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1- bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res Treat, 2010,123(1):39–49

    Article  CAS  PubMed  Google Scholar 

  115. Comunanza V, Gigliotti C, Lamba S, et al. Dual VEGFA/BRAF targeting boosts PD-1 blockade in melanoma through GM-CSF-mediated infiltration of M1 macrophages. Mol Oncol, 2023,17(8):1474–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Van Overmeire E, Stijlemans B, Heymann F, et al. M-CSF and GM-CSF Receptor Signaling Differentially Regulate Monocyte Maturation and Macrophage Polarization in the Tumor Microenvironment. Cancer Res, 2016,76(1):35–42

    Article  CAS  PubMed  Google Scholar 

  117. Owen JL, Torroella-Kouri M, Handel-Fernandez ME, et al. GM-CSF up-regulates the expression of CCL2 by T lymphocytes in mammary tumor-bearing mice. Int J Mol Med, 2007,20(1):129–136

    CAS  PubMed  Google Scholar 

  118. Sierra-Filardi E, Nieto C, Domínguez-Soto A, et al. CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile. J Immunol, 2014,192(8):3858–3867

    Article  CAS  PubMed  Google Scholar 

  119. Bhattacharya P, Gopisetty A, Ganesh BB, et al. GM-CSF-induced, bone-marrow-derived dendritic cells can expand natural Tregs and induce adaptive Tregs by different mechanisms. J Leukoc Biol, 2011,89(2):235–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Arnold IC, Artola-Boran M, Gurtner A, et al. The GM-CSF-IRF5 signaling axis in eosinophils promotes antitumor immunity through activation of type 1 T cell responses. J Exp Med, 2020,217(12):e20190706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kalinski P. Regulation of immune responses by prostaglandin E2. J Immunol, 2012,188(1):21–28

    Article  CAS  PubMed  Google Scholar 

  122. Dou Z, Ghosh K, Vizioli MG, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature, 2017,550(7676):402–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Curran E, Chen X, Corrales L, et al. STING Pathway Activation Stimulates Potent Immunity against Acute Myeloid Leukemia. Cell Rep, 2016,15(11):2357–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Woo SR, Fuertes MB, Corrales L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity, 2014,41(5):830–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gajewski TF, Corrales L. New perspectives on type I IFNs in cancer. Cytokine Growth Factor Rev, 2015,26(2):175–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ahn J, Konno H, Barber GN. Diverse roles of STING-dependent signaling on the development of cancer. Oncogene, 2015,34(41):5302–5308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Xu N, Palmer DC, Robeson AC, et al. STING agonist promotes CAR T cell trafficking and persistence in breast cancer. J Exp Med, 2021,218(2):e20200844

    Article  CAS  PubMed  Google Scholar 

  128. Chen Q, Boire A, Jin X, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 2016,533(7604):493–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lemos H, Mohamed E, Huang L, et al. STING Promotes the Growth of Tumors Characterized by Low Antigenicity via IDO Activation. Cancer Res, 2016,76(8):2076–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ding L, Huang XF, Dong GJ, et al. Activated STING enhances Tregs infiltration in the HPV-related carcinogenesis of tongue squamous cells via the c-jun/CCL22 signal. Biochim Biophys Acta, 2015,1852(11):2494–2503

    Article  CAS  Google Scholar 

  131. Kumar S, Nandi A, Singh S, et al. Dll1+ quiescent tumor stem cells drive chemoresistance in breast cancer through NF-κB survival pathway. Nat Commun, 2021,12(1):432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Somani VK, Zhang D, Dodhiawala PB, et al. IRAK4 Signaling Drives Resistance to Checkpoint Immunotherapy in Pancreatic Ductal Adenocarcinoma. Gastroenterology, 2022,162(7):2047–2062

    Article  CAS  PubMed  Google Scholar 

  133. Gresser I, Bourali C. Antitumor effects of interferon preparations in mice. J Natl Cancer Inst, 1970,45(2):365–376

    CAS  PubMed  Google Scholar 

  134. Golomb HM, Jacobs A, Fefer A, et al. Alpha-2 interferon therapy of hairy-cell leukemia: a multicenter study of 64 patients. J Clin Oncol, 1986,4(6):900–905

    Article  CAS  PubMed  Google Scholar 

  135. Solal-Celigny P, Lepage E, Brousse N, et al. Recombinant interferon alfa-2b combined with a regimen containing doxorubicin in patients with advanced follicular lymphoma. Groupe d’Etude des Lymphomes de l’Adulte. N Engl J Med, 1993,329(22):1608–1614

    Article  CAS  PubMed  Google Scholar 

  136. Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol, 1999,17(7):2105–2116

    Article  CAS  PubMed  Google Scholar 

  137. Groopman JE, Gottlieb MS, Goodman J, et al. Recombinant alpha-2 interferon therapy for Kaposi’s sarcoma associated with the acquired immunodeficiency syndrome. Ann Intern Med, 1984,100(5):671–676

    Article  CAS  PubMed  Google Scholar 

  138. Majer M, Welberg LAM, Capuron L, et al. IFN-alpha-induced motor slowing is associated with increased depression and fatigue in patients with chronic hepatitis C. Brain Behav Immun, 2008,22(6):870–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fioravanti J, González I, Medina-Echeverz J, et al. Anchoring interferon alpha to apolipoprotein A-I reduces hematological toxicity while enhancing immunostimulatory properties. Hepatology, 2011,53(6):1864–1873

    Article  CAS  PubMed  Google Scholar 

  140. Keilholz U, Goey SH, Punt CJ, et al. Interferon alfa-2a and interleukin-2 with or without cisplatin in metastatic melanoma: a randomized trial of the European Organization for Research and Treatment of Cancer Melanoma Cooperative Group. J Clin Oncol, 1997,15(7):2579–2588

    Article  CAS  PubMed  Google Scholar 

  141. Rizza P, Capone I, Moretti F, et al. IFN-α as a vaccine adjuvant: recent insights into the mechanisms and perspectives for its clinical use. Expert Rev Vaccines, 2011,10(4):487–498

    Article  CAS  PubMed  Google Scholar 

  142. Groenewegen G, Bloem A, De Gast GC. PhaseI/II study of study of sequential chemoimmunotherapy (SCIT) for metastatic metastatic melanoma: outpatient treatment with dacarbazine, dacarbazine, granulocyte-macrophage colony-stimulating factor, low-dose interleukin-2, and interferon-alpha. Cancer Immunol Immunother, 2002,51(11–12):630–636

    Article  CAS  PubMed  Google Scholar 

  143. Di Pucchio T, Pilla L, Capone I, et al. Immunization of stage IV melanoma patients with Melan-A/MART-1 and gp100 peptides plus IFN-alpha results in the activation of specific CD8(+) T cells and monocyte/dendritic cell precursors. Cancer Res, 2006,66(9):4943–4951

    Article  CAS  PubMed  Google Scholar 

  144. Brown ER, Charles KA, Hoare SA, et al. A clinical study assessing the tolerability and biological effects of infliximab, a TNF-alpha inhibitor, in patients with advanced cancer. Ann Oncol, 2008,19(7):1340–1346

    Article  CAS  PubMed  Google Scholar 

  145. Harrison ML, Obermueller E, Maisey NR, et al. Tumor necrosis factor alpha as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose. J Clin Oncol, 2007,25(29):4542–4549

    Article  CAS  PubMed  Google Scholar 

  146. Montfort A, Filleron T, Virazels M, et al. Combining Nivolumab and Ipilimumab with Infliximab or Certolizumab in Patients with Advanced Melanoma: First Results of a Phase Ib Clinical Trial. Clin Cancer Res, 2021,27(4):1037–1047

    Article  CAS  PubMed  Google Scholar 

  147. Deng L, Liang H, Burnette B, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest, 2014,124(2):687–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bertrand F, Montfort A, Marcheteau E, et al. TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nat Commun, 2017,8(1):2256

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hodi FS, Lee S, McDermott DF, et al. Ipilimumab plus sargramostim vs ipilimumab alone for treatment of metastatic melanoma: a randomized clinical trial. JAMA, 2014,312(17):1744–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Martinez M, Ono N, Planutiene M, et al. Granulocyte-macrophage stimulating factor (GM-CSF) increases circulating dendritic cells but does not abrogate suppression of adaptive cellular immunity in patients with metastatic colorectal cancer receiving chemotherapy. Cancer Cell Int, 2012,12(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ferrucci PF, Pala L, Conforti F, et al. Talimogene Laherparepvec (T-VEC): An Intralesional Cancer Immunotherapy for Advanced Melanoma. Cancers (Basel), 2021,13(6):1383

    Article  CAS  PubMed  Google Scholar 

  152. Maung K, Nemunaitis J, Cunningham C. Granulocyte macrophage colony-stimulating factor (GM-CSF) genetransduced tumor vaccines (GVAX) in non-small-cell lung cancer. Clin Lung Cancer, 2001,3(1):25–26

    Article  CAS  PubMed  Google Scholar 

  153. Atallah-Yunes SA, Robertson MJ. Cytokine Based Immunotherapy for Cancer and Lymphoma: Biology, Challenges and Future Perspectives. Front Immunol, 2022,13:872010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Uricoli B, Birnbaum LA, Do P, et al. Engineered Cytokines for Cancer and Autoimmune Disease Immunotherapy. Adv Healthc Mater, 2021,10(15):e2002214

    Article  PubMed  PubMed Central  Google Scholar 

  155. Li CY, Huang Q, Kung HF. Cytokine and immunogene therapy for solid tumors. Cell Mol Immunol, 2005,2(2):81–91

    CAS  PubMed  Google Scholar 

  156. Nanni P, Forni G, Lollini PL. Cytokine gene therapy: hopes and pitfalls. Ann Oncol, 1999,10(3):261–266

    Article  CAS  PubMed  Google Scholar 

  157. Liu Y, Adu-Berchie K, Brockman JM, et al. Cytokine conjugation to enhance T cell therapy. Proc Natl Acad Sci U S A, 2023,120(1):e2213222120

    Article  CAS  PubMed  Google Scholar 

  158. Cheung NK, Kushner BH, Kramer K. Monoclonal antibody-based therapy of neuroblastoma. Hematol Oncol Clin North Am, 2001,15(5):853–866

    Article  CAS  PubMed  Google Scholar 

  159. Vornholz L, Isay SE, Kurgyis Z, et al. Synthetic enforcement of STING signaling in cancer cells appropriates the immune microenvironment for checkpoint inhibitor therapy. Sci Adv, 2023,9(11):eadd8564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Xia or Qing-lei Gao.

Ethics declarations

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Mj., Xia, Y. & Gao, Ql. DNA Damage-driven Inflammatory Cytokines: Reprogramming of Tumor Immune Microenvironment and Application of Oncotherapy. CURR MED SCI 44, 261–272 (2024). https://doi.org/10.1007/s11596-024-2859-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-024-2859-1

Key words

Navigation