Skip to main content
Log in

Epigallocatechin-3-gallate Alleviates Cognitive Deficits in APP/PS1 Mice

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Alzheimer’s disease (AD) shows cognitive impairments in clinic, which is multifactorial with different etiopathogenic mechanisms such as Aβ deposition, neuroinflammation and neuronal dystrophy involved. Therefore, multi-targets drugs with neuroprotective, anti-amyloidogenic and anti-inflammatory properties will be effective in AD treatment. Epigallocatechin-3-gallate (EGCG) possesses a broad spectrum of pharmacological activities in the prevention and treatment of multiple neurodegenerative diseases. In the present study, we showed that oral administration of EGCG (50 mg/kg) for 4 months significantly attenuated the cognitive deficits in APP/PS1 transgenic mice, which served as AD model. Moreover, EGCG induced an improvement in dendritic integrity and expression levels of synaptic proteins in the brain of APP/PS1 mice. And EGCG exerted obvious anti-inflammatory effects, which was manifested by alleviating microglia activation, decreasing pro-inflammatory cytokine (IL-1β) and increasing anti-inflammatory cytokines (IL-10, IL-13). Furthermore, β-amyloid (Aβ) plaques were markedly reduced in the hippocampus of 6-month old APP/PS1 mice after EGCG treatment. In conclusion, these findings indicate that EGCG improves AD-like cognitive impairments through neuroprotective, anti-amyloidogenic and anti-inflammatory effects, thus is a promising therapeutic candidate for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iqbal K, Grundke-Iqbal I, Zaidi T, et al. Defective brain microtubule assembly in Alzheimer’s disease. Lancet, 1986,2(8504):421–426

    CAS  PubMed  Google Scholar 

  2. Bjorklund G, Aaseth J, Dadar M, et al. Molecular Targets in Alzheimer’s Disease. Mol Neurobiol, 2019,56(10):7032–7044

    PubMed  Google Scholar 

  3. Long JM, Holtzman DM. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell, 2019,179(2):312–339

    CAS  PubMed  Google Scholar 

  4. Vassar R, Kovacs DM, Yan R, et al. The beta-secretase enzyme BACE in health and Alzheimer’s disease: regulation, cell biology, function, and therapeutic potential. J Neurosci, 2009,29(41):12 787–12 794

    CAS  Google Scholar 

  5. Yan R, Vassar R. Targeting the beta secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol, 2014,13(3):319–329

    CAS  PubMed  PubMed Central  Google Scholar 

  6. De Strooper B, Vassar R, Golde T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol, 2010,6(2):99–107

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Iqbal K, Alonso Adel C, Grundke-Iqbal I. Cytosolic abnormally hyperphosphorylated tau but not paired helical filaments sequester normal MAPs and inhibit microtubule assembly. J Alzheimers Dis, 2008,14(4):365–370

    PubMed  PubMed Central  Google Scholar 

  8. Iqbal K, Grundke-Iqbal I. Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer’s disease. Mol Neurobiol, 1991,5(2–4):399–410

    CAS  PubMed  Google Scholar 

  9. Iqbal K, Grundke-Iqbal I. Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention. J Cell Mol Med, 2008,12(1):38–55

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Alonso AC, Zaidi T, Grundke-Iqbal I, et al. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA, 1994,91(12):5562–5566

    CAS  PubMed  Google Scholar 

  11. Hoover BR, Reed MN, Su J, et al. Tau Mislocalization to Dendritic Spines Mediates Synaptic Dysfunction Independently of Neurodegeneration. Neuron, 2010,68(6):1067–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Domingues C, da Cruz ESOAB, Henriques AG. Impact of Cytokines and Chemokines on Alzheimer’s Disease Neuropathological Hallmarks. Curr Alzheimer Res, 2017,14(8):870–882

    CAS  PubMed  PubMed Central  Google Scholar 

  13. McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol, 2013,126(4):479–497

    CAS  PubMed  Google Scholar 

  14. Han QQ, Shen TT, Wang F, et al. Preventive and Therapeutic Potential of Vitamin C in Mental Disorders. Curr Med Sci, 2018,38(1):1–10

    CAS  PubMed  Google Scholar 

  15. Agostinho P, Cunha RA, Oliveira C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des, 2010,16(25):2766–1678

    CAS  PubMed  Google Scholar 

  16. Dzamba D, Harantova L, Butenko O, et al. Glial Cells — The Key Elements of Alzheimer’s Disease. Curr Alzheimer Res, 2016,13(8):894–911

    CAS  PubMed  Google Scholar 

  17. Guerriero F, Sgarlata C, Francis M, et al. Neuroinflammation, immune system and Alzheimer disease: searching for the missing link. Aging Clin Exp Res, 2017,29(5):821–831

    CAS  PubMed  Google Scholar 

  18. Meda L, Cassatella MA, Szendrei GI, et al. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature, 1995,374(6523):647–650

    CAS  PubMed  Google Scholar 

  19. Meraz-Rios MA, Toral-Rios D, Franco-Bocanegra D, et al. Inflammatory process in Alzheimer’s Disease. Front Integr Neurosci, 2013,7:59

    PubMed  PubMed Central  Google Scholar 

  20. Morales I, Guzman-Martinez L, Cerda-Troncoso C, et al. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci, 2014,8:112

    PubMed  PubMed Central  Google Scholar 

  21. Canter RG, Penney J, Tsai LH. The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature, 2016,539(7628):187–196

    PubMed  Google Scholar 

  22. Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med, 2010,362(4):329–344

    CAS  PubMed  Google Scholar 

  23. Guo S, Bezard E, Zhao B. Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radical Biol Med, 2005,39(5):682–695

    CAS  Google Scholar 

  24. Nanjo F, Goto K, Seto R, et al. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radical Biol Med, 1996,21(6):895–902

    CAS  Google Scholar 

  25. Singh R, Akhtar N, Haqqi TM. Green tea polyphenol epigallocatechin-3-gallate: inflammation and arthritis. Life Sci, 2010,86(25–26):907–918

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Unno K, Takabayashi F, Kishido T, et al. Suppressive effect of green tea catechins on morphologic and functional regression of the brain in aged mice with accelerated senescence (SAMP10). Exp Gerontol, 2004,39(7):1027–1034

    CAS  PubMed  Google Scholar 

  27. Unno K, Takabayashi F, Yoshida H, et al. Daily consumption of green tea catechin delays memory regression in aged mice. Biogerontology, 2007,8(2):89–95

    CAS  PubMed  Google Scholar 

  28. Rezai-Zadeh K, Arendash GW, Hou H, et al. Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res, 2008,1214:177–187

    CAS  PubMed  Google Scholar 

  29. Rezai-Zadeh K, Shytle D, Sun N, et al. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci, 2005,25(38):8807–8814

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc, 2006,1(2):848–858

    PubMed  PubMed Central  Google Scholar 

  31. Ding Y, Qiao AM, Wang ZQ, et al. Retinoic Acid Attenuates beta-Amyloid Deposition and Rescues Memory Deficits in an Alzheimer’s Disease Transgenic Mouse Model. J Neurosci, 2008,28(45):11 622–11 634

    CAS  Google Scholar 

  32. Cao DF, Lu HL, Lewis TL, et al. Intake of sucrose-sweetened water induces insulin resistance and exacerbates memory deficits and amyloidosis in a transgenic mouse model of Alzheimer disease. J Biol Chem, 2007,282(50):36 275–36 282

    CAS  Google Scholar 

  33. Kurt MA, Davies DC, Kidd M, et al. Hyperphosphorylated tau and paired helical filament-like structures in the brains of mice carrying mutant amyloid precursor protein and mutant presenilin-1 transgenes. Neurobiol Dis, 2003,14(1):89–97

    CAS  PubMed  Google Scholar 

  34. Arab H, Mahjoub S, Hajian-Tilaki K, et al. The effect of green tea consumption on oxidative stress markers and cognitive function in patients with Alzheimer’s disease: A prospective intervention study. Caspian J Intern Med, 2016,7(3):188–194

    PubMed  PubMed Central  Google Scholar 

  35. Chan DKY, Mellick GD, et al. Genetic and environmental risk factors and their interactions for Parkinson’s disease in a Chinese population. J Clin Neurosci, 2003,10(3):313–315

    CAS  PubMed  Google Scholar 

  36. Kuriyama S, Hozawa A, Ohmori K, et al. Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project 1. Am J Clin Nutr, 2006,83(2):355–361

    CAS  PubMed  Google Scholar 

  37. Ritchie K, Lovestone S. The dementias. Lancet, 2002,360(9347):1759–1766

    PubMed  Google Scholar 

  38. Grinberg LN, Newmark H, Kitrossky N, et al. Protective effects of tea polyphenols against oxidative damage to red blood cells. Biochem Pharmacol, 1997,54(9):973–978

    CAS  PubMed  Google Scholar 

  39. van Acker SA, van den Berg DJ, Tromp MN, et al. Structural aspects of antioxidant activity of flavonoids. Free Radical Biol Med, 1996,20(3):331–342

    CAS  Google Scholar 

  40. Okello EJ, Leylabi R, McDougall GJ. Inhibition of acetylcholinesterase by green and white tea and their simulated intestinal metabolites. Food Funct, 2012,3(6):651–661

    CAS  PubMed  Google Scholar 

  41. Qin XY, Cheng Y, Yu LC. Potential protection of green tea polyphenols against intracellular amyloid beta-induced toxicity on primary cultured prefrontal cortical neurons of rats. Neurosci Lett, 2012,513(2):170–173

    CAS  PubMed  Google Scholar 

  42. Singh NA, Mandal AK, Khan ZA. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutrition J, 2016,15(1):60

    Google Scholar 

  43. Haque AM, Hashimoto M, Katakura M, et al. Long-term administration of green tea catechins improves spatial cognition learning ability in rats. J Nutr, 2006,136(4):1043–1047

    CAS  PubMed  Google Scholar 

  44. Erba D, Riso P, Bordoni A, et al. Effectiveness of moderate green tea consumption on antioxidative status and plasma lipid profile in humans. J Nutr Biochem, 2005,16(3):144–149

    CAS  PubMed  Google Scholar 

  45. Panza VSP, Wazlawik E, Schuetz GR, et al. Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition, 2008,24(5):433–442

    CAS  PubMed  Google Scholar 

  46. Sartor L, Pezzato E, Garbisa S. (−)Epigallocatechin-3-gallate inhibits leukocyte elastase: potential of the phyto-factor in hindering inflammation, emphysema, and invasion. J Leukocyte Biol, 2002,71(1):73–79

    CAS  PubMed  Google Scholar 

  47. Dona M, Dell’Aica I, Calabrese F, et al. Neutrophil, restraint by green tea: Inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. J Immunol, 2003,170(8):4335–4341

    CAS  PubMed  Google Scholar 

  48. San Yeoh B, Olvera RA, Singh V, et al. Epigallocatechin-3-Gallate Inhibition of Myeloperoxidase and Its Counter-Regulation by Dietary Iron and Lipocalin 2 in Murine Model of Gut Inflammation. Am J Pathol, 2016,186(4):912–926

    Google Scholar 

  49. Ban JY, Jeon SY, Bae K, et al. Catechin and epicatechin from Smilacis chinae rhizome protect cultured rat cortical neurons against amyloid beta protein (25–35)-induced neurotoxicity through inhibition of cytosolic calcium elevation. Life Sci, 2006,79(24):2251–2259

    CAS  PubMed  Google Scholar 

  50. Koh SH, Lee SM, Kim HY, et al. The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci Lett, 2006,395(2):103–107

    CAS  PubMed  Google Scholar 

  51. Reznichenko L, Amit T, Youdim MB, et al. Green tea polyphenol (−)-epigallocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite outgrowth. J Neurochem, 2005,93(5):1157–1167

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-ji Shu.

Additional information

Conflict of Interest Statement

The authors have no conflict of interest.

This work was supported in part by the National Natural Science Foundation of China (No. 31800851).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, J., Liu, W., Zhou, Hy. et al. Epigallocatechin-3-gallate Alleviates Cognitive Deficits in APP/PS1 Mice. CURR MED SCI 40, 18–27 (2020). https://doi.org/10.1007/s11596-020-2142-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-020-2142-z

Key words

Navigation