Skip to main content
Log in

Double-edge Role of B Cells in Tumor Immunity: Potential Molecular Mechanism

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

B cells are a heterogeneous population, which have distinct functions of antigen presentation, activating T cells, and secreting antibodies, cytokines as well as protease. It is supposed that the balance among these B cells subpopulation (resting B cells, activated B cells, Bregs, and other differentiated B cells) will determine the ultimate role of B cells in tumor immunity. There has been increasing evidence supporting opposite roles of B cells in tumor immunity, though there are no general acceptable phenotypes for them. Recent years, a new designated subset of B cells identified as Bregs has emerged from immunosuppressive and/or regulatory functions in tumor immune responses. Therefore, transferring activated B cells would be possible to become a promising strategy against tumor via conquering the immunosuppressive status of B cells in future. Understanding the potential mechanism of double-edge role of B cells will help researchers utilize activated B cells to improve their anti-tumor response. Moreover, the molecular pathways related to B cell differentiation are involved in its tumor-promoting effect, such as NF-κB, STAT3, BTK. So, we review the molecular and signaling pathway mechanisms of B cells involved in both tumor-promoting and tumor-suppressive immunity, in order to help researchers optimize B cells to fight cancer better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu X, Zhang J, Wang J, et al. Landscape of B cell immunity and related immune evasion in human cancers. Nat Genet, 2019,51(3):560–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tokunaga R, Naseem M, Lo JH, et al. B cell and B cell-related pathways for novel cancer treatments. Cancer Treat Rev, 2019,73:10–19

    Article  CAS  PubMed  Google Scholar 

  3. Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol, 2004,25(6):280–288

    Article  CAS  Google Scholar 

  4. Sun SC. The non-canonical NF-kappaB pathway in immunity and inflammation. Nat Rev Immunol, 2017,17(9):545–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ammirante M, Luo JL, Grivennikov S, et al. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature, 2010,464(7286):302–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ammirante M, Kuraishy AI, Shalapour S, et al. An IKKalpha-E2F1-BMI1 cascade activated by infiltrating B cells controls prostate regeneration and tumor recurrence. Genes Dev, 2013,27(13):1435–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wuerzberger-Davis SM, Chen Y, Yang DT, et al. Nuclear export of the NF-kappaB inhibitor IkappaBalpha is required for proper B cell and secondary lymphoid tissue formation. Immunity, 2011,34(2):188–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huynh J, Etemadi N, Hollande F, et al. The JAK/STAT3 axis: A comprehensive drug target for solid malignancies. Semin Cancer Biol, 2017,45:13–22

    Article  CAS  PubMed  Google Scholar 

  9. Yang C, Lee H, Pal S, et al. B cells promote tumor progression via STAT3 regulated-angiogenesis. PLoS One, 2013,8(5):e64159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang C, Xin H, Zhang W, et al. CD5 Binds to Interleukin-6 and Induces a Feed-Forward Loop with the Transcription Factor STAT3 in B Cells to Promote Cancer. Immunity, 2016,44(4):913–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ren Y, Yu K, Sun S, et al. JSI124 inhibits breast cancer cell growth by suppressing the function of B cells via the downregulation of signal transducer and activator of transcription 3. Oncol Lett, 2014,8(2):928–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Olkhanud PB, Damdinsuren B, Bodogai M, et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4(+) T cells to T-regulatory cells. Cancer Res, 2011,71(10):3505–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee-Chang C, Bodogai M, Martin-Montalvo A, et al. Inhibition of breast cancer metastasis by resveratrol-mediated inactivation of tumor-evoked regulatory B cells. J Immunol, 2013,191(8):4141–4151

    Article  CAS  PubMed  Google Scholar 

  14. Gunderson AJ, Kaneda MM, Tsujikawa T, et al. Bruton Tyrosine Kinase-Dependent Immune Cell Cross-talk Drives Pancreas Cancer. Cancer Discov, 2016,6(3):270–285

    Article  CAS  PubMed  Google Scholar 

  15. Seiler T, Dreyling M. Bruton’s tyrosine kinase inhibitors in B-cell lymphoma: current experience and future perspectives. Expert Opin Investig Drugs, 2017,26(8): 909–915

    Article  CAS  PubMed  Google Scholar 

  16. Hamze M, Desmetz C, Guglielmi P. B cell-derived cytokines in disease. Eur Cytokine Netw, 2013,24(1):20–26

    Article  CAS  PubMed  Google Scholar 

  17. Schioppa T, Moore R, Thompson RG, et al. B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc Natl Acad Sci USA, 2011,108(26):10 662–10 667

    Article  CAS  Google Scholar 

  18. Inoue S, Leitner WW, Golding B, et al. Inhibitory effects of B cells on antitumor immunity. Cancer Res, 2006,66(15):7741–7747

    Article  CAS  PubMed  Google Scholar 

  19. Tao H, Lu L, Xia Y, et al. Antitumor effector B cells directly kill tumor cells via the Fas/FasL pathway and are regulated by IL-10. Eur J Immunol, 2015,45(4):999–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Horikawa M, Minard-Colin V, Matsushita T, et al. Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice. J Clin Invest, 2011,121(11):4268–4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gorosito Serran M, Fiocca Vernengo F, Beccaria CG, et al. The regulatory role of B cells in autoimmunity, infections and cancer: Perspectives beyond IL10 production. FEBS Lett, 2015,589(22):3362–3369

    Article  CAS  PubMed  Google Scholar 

  22. Pylayeva-Gupta Y, Das S, Handler JS, et al. IL35-Producing B Cells Promote the Development of Pancreatic Neoplasia. Cancer Discov, 2016,6(3):247–255

    Article  CAS  PubMed  Google Scholar 

  23. Ou Z, Wang Y, Liu L, et al. Tumor microenvironment B cells increase bladder cancer metastasis via modulation of the IL-8/androgen receptor (AR)/MMPs signals. Oncotarget, 2015,6(28):26 065–26 078

    Article  Google Scholar 

  24. Lee KE, Spata M, Bayne LJ, et al. Hif1a Deletion Reveals Pro-Neoplastic Function of B Cells in Pancreatic Neoplasia. Cancer Discov, 2016,6(3):256–269

    Article  CAS  PubMed  Google Scholar 

  25. Seton-Rogers S. Pancreatic cancer: Spotlight on B cells. Nat Rev Cancer, 2016,16(2):67

    Article  CAS  PubMed  Google Scholar 

  26. Forte G, Sorrentino R, Montinaro A, et al. Inhibition of CD73 improves B cell-mediated anti-tumor immunity in a mouse model of melanoma. J Immunol, 2012,189(5):2226–2233

    Article  CAS  PubMed  Google Scholar 

  27. Kemp TJ, Moore JM, Griffith TS. Human B cells express functional TRAIL/Apo-2 ligand after CpG-containing oligodeoxynucleotide stimulation. J Immunol, 2004,173(2):892–899

    Article  CAS  PubMed  Google Scholar 

  28. Iglesia MD, Vincent BG, Parker JS, et al. Prognostic B-cell signatures using mRNA-seq in patients with subtype-specific breast and ovarian cancer. Clin Cancer Res, 2014,20(14):3818–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tadmor T, Zhang Y, Cho HM, et al. The absence of B lymphocytes reduces the number and function of T-regulatory cells and enhances the anti-tumor response in a murine tumor model. Cancer Immunol Immunother, 2011,60(5):609–619

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Eliav Y, Shin SU, et al. B lymphocyte inhibition of anti-tumor response depends on expansion of Treg but is independent of B-cell IL-10 secretion. Cancer Immunol Immunother, 2013,62(1):87–99

    Article  CAS  PubMed  Google Scholar 

  31. Shah S, Divekar AA, Hilchey SP, et al. Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells. Int J Cancer, 2005,117(4):574–586

    Article  CAS  PubMed  Google Scholar 

  32. Guy TV, Terry AM, Bolton HA, et al. Pro- and anti-tumour effects of B cells and antibodies in cancer: a comparison of clinical studies and preclinical models. Cancer Immunol Immunother, 2016,65(8):885–896

    Article  CAS  PubMed  Google Scholar 

  33. Kim SJ, Caton M, Wang C, et al. Increased IL-12 inhibits B cells’ differentiation to germinal center cells and promotes differentiation to short-lived plasmablasts. J Exp Med, 2008,205(10):2437–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xia Y, Tao H, Hu Y, et al. IL-2 augments the therapeutic efficacy of adoptively transferred B cells which directly kill tumor cells via the CXCR4/CXCL12 and perforin pathways. Oncotarget, 2016,7(37):60 461–60 474

    Article  Google Scholar 

  35. Li Q, Lao X, Pan Q, et al. Adoptive transfer of tumor reactive B cells confers host T-cell immunity and tumor regression. Clin Cancer Res, 2011,17(15):4987–4995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li Q, Grover AC, Donald EJ, et al. Simultaneous targeting of CD3 on T cells and CD40 on B or dendritic cells augments the antitumor reactivity of tumor-primed lymph node cells. J Immunol, 2005,175(3):1424–1432

    Article  CAS  PubMed  Google Scholar 

  37. Li Q, Teitz-Tennenbaum S, Donald EJ, et al. In vivo sensitized and in vitro activated B cells mediate tumor regression in cancer adoptive immunotherapy. J Immunol, 2009,183(5):3195–3203

    Article  CAS  PubMed  Google Scholar 

  38. DiLillo DJ, Yanaba K, Tedder TF. B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: therapeutic B cell depletion enhances B16 melanoma growth in mice. J Immunol, 2010,184(7):4006–4016

    Article  CAS  PubMed  Google Scholar 

  39. Kim S, Fridlender ZG, Dunn R, et al. B-cell depletion using an anti-CD20 antibody augments antitumor immune responses and immunotherapy in nonhematopoetic murine tumor models. J Immunother, 2008,31(5):446–457

    Article  CAS  PubMed  Google Scholar 

  40. Schwartz M, Zhang Y, Rosenblatt JD. B cell regulation of the anti-tumor response and role in carcinogenesis. J Immunother Cancer, 2016,4:40

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sarvaria A, Madrigal JA, Saudemont A. B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol, 2017,14(8):662–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hagn M, Jahrsdorfer B. Why do human B cells secrete granzyme B? Insights into a novel B-cell differentiation pathway. Oncoimmunology, 2012,1(8):1368–1375

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bao Y, Cao X. The immune potential and immunopathology of cytokine-producing B cell subsets: a comprehensive review. J Autoimmun, 2014,55:10–23

    Article  CAS  PubMed  Google Scholar 

  44. Wennhold K, Weber TM, Klein-Gonzalez N, et al. CD40-activated B cells induce anti-tumor immunity in vivo. Oncotarget, 2017,8(17):27 740–27 753

    Article  Google Scholar 

  45. Shimabukuro-Vornhagen A, Schlosser HA, Gryschok L, et al. Characterization of tumor-associated B-cell subsets in patients with colorectal cancer. Oncotarget, 2014,5(13):4651–4664

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang JZ, Zhang YH, Guo XH, et al. The double-edge role of B cells in mediating antitumor T-cell immunity: Pharmacological strategies for cancer immunotherapy. Int Immunopharmacol, 2016,36:73–85

    Article  PubMed  CAS  Google Scholar 

  47. Shalapour S, Font-Burgada J, Di Caro G, et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature, 2015, 521(7550):94–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-li Hu or Wen-juan Qin.

Additional information

Conflict of Interest Statement

The authors declare there is no conflicts of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Kl., Yang, Xj., Jin, Hz. et al. Double-edge Role of B Cells in Tumor Immunity: Potential Molecular Mechanism. CURR MED SCI 39, 685–689 (2019). https://doi.org/10.1007/s11596-019-2092-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-019-2092-5

Key words

Navigation