Skip to main content
Log in

Rapamycin Treatment Attenuates Angiotensin II -induced Abdominal Aortic Aneurysm Formation via VSMC Phenotypic Modulation and Down-regulation of ERK1/2 Activity

  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

The aim of the present study is to address the effect of rapamycin on abdominal aortic aneurysm (AAA) and the potential mechanisms. A clinically relevant AAA model was induced in apolipoprotein E-deficient (ApoE-/-) mice, in which miniosmotic pump was implanted subcutaneously to deliver angiotensin II (Ang II) for 14 days. Male ApoE-/- mice were randomly divided into 3 groups: saline infusion, Ang II infusion, and Ang II infusion plus intraperitoneal injection of rapamycin. The diameter of the supra-renal abdominal aorta was measured by ultrasonography at the end of the infusion. Then aortic tissue was excised and examined by Western blotting and histoimmunochemistry. Ang n with or without rapamycin treatment was applied to the cultured vascular smooth muscle cells (VSMCs) in vitro. The results revealed that rapamycin treatment significantly attenuated the incidence of Ang II induced-AAA in ApoE-/- mice. Histologic analysis showed that rapamycin treatment decreased disarray of elastin fibers and VSMCs hyperplasia in the medial layer. Immunochemistry staining and Western blotting documented the increased phospho-ERK1/2 and ERK1/2 expression in aortic walls in Ang II induced-AAA, as well as in human lesions. Whereas in the rapamycintreated group, decreased phospho-ERKl/2 expression level was detected. Moreover, rapamycin reversed Ang II -induced VSMCs phenotypic change both in vivo and in vitro. Based on those results, we confirmed that rapamycin therapy suppressed Ang II -induced AAA formation in mice, partially via VSMCs phenotypic modulation and down-regulation of ERK1/2 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Golledge J, Norman PE. Current status of medical management for abdominal aortic aneurysm. Atherosclerosis, 2011,217(1): 57–63

    Article  PubMed  CAS  Google Scholar 

  2. Nordon IM, HinchlifFe RJ, Loftus IM, etal. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat Rev Cardiol, 2011, 8(2): 92–102

    Article  PubMed  Google Scholar 

  3. Wang Y, Ait-Oufella H, Herbin O, etal. TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin Il-infused mice. J Clin Invest, 2010, 120(2): 422–432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ghoshal S, Loftin CD. Cyclooxygenase-2 inhibition attenuates abdominal aortic aneurysm progression in hyperlipidemic mice. PLoS One, 2012,7(1l): e44 369

    Article  CAS  Google Scholar 

  5. Cafueri G, Parodi F, Pistorio A, etal. Endothelial and smooth muscle cells from abdominal aortic aneurysm have increased oxidative stress and telomere attrition. PLoS One, 2012,7(4): e35 312

    Google Scholar 

  6. Satoh K, Nigra P, Matoba T, etal. Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms. Nat Med, 2009, 15(6): 649–656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Johanning JM, Franklin DP, Han DC, etal. Inhibition of inducible nitric oxide synthase limits nitric oxide production and experimental aneurysm expansion. J Vase Surg, 2001, 33(3): 579–586

    Article  CAS  Google Scholar 

  8. Ailawadi G, Eliason JL, Upchurch GR, Jr. Current concepts in the pathogenesis of abdominal aortic aneurysm. J Vase Surg, 2003, 38(3): 584–588

    Article  Google Scholar 

  9. Patel MI, Ghosh P, Melrose J, etal. Smooth muscle cell migration and proliferation is enhanced in abdominal aortic aneurysms. Aust N Z J Surg, 1996, 66(5): 305–308

    Article  PubMed  CAS  Google Scholar 

  10. Mao N, Gu T, Shi E, etal. Phenotypic switching of vascular smooth muscle cells in animal model of rat thoracic aortic aneurysm. Interact Cardiovasc Thorac Surg, 2015,21(1): 62–70

    Article  PubMed  Google Scholar 

  11. Ailawadi G, Moehle CW, Pei H, etal. Smooth muscle phenotypic modulation is an early event in aortic aneurysms. J Thorac Cardiovasc Surg, 2009, 138(6): 1392–1399

    Article  PubMed  PubMed Central  Google Scholar 

  12. Savoia C, Burger D, Nishigaki N, etal. Angiotensin II and the vascular phenotype in hypertension. Expert Rev Mol Med, 2011,13:ell

    Article  CAS  Google Scholar 

  13. Eguchi S, Dempsey PJ, Frank GD, etal. Activation of MAPKs by angiotensin II in vascular smooth muscle cells. Metalloprotease-dependent EGF receptor activation is required for activation of ERK and p38 MAPK but not for JNK. J Biol Chem, 2001, 276(11): 7957–7962

    Article  PubMed  CAS  Google Scholar 

  14. Daugherty A, Cassis L. Angiotensin II and abdominal aortic aneurysms. Curr Hypertens Rep, 2004, 6(6): 442–446

    Article  PubMed  Google Scholar 

  15. Daugherty A, Manning MW, Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest, 2000, 105(11): 1605–1612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Thompson RW. Reflections on the pathogenesis of abdominal aortic aneurysms. Cardiovasc Surg, 2002, 10(4): 389–394

    Article  PubMed  Google Scholar 

  17. McCormick ML, Gavrila D, Weintraub NL. Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vase Biol, 2007, 27(3): 461–469

    Article  CAS  Google Scholar 

  18. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev, 2004, 18(16): 1926–1945

    Article  PubMed  CAS  Google Scholar 

  19. Lipton JO, Sahin M. The neurology of mTOR. Neuron, 2014, 84(2): 275–291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Holmes DR Jr, Leon MB, Moses JW, etal. Analysis of 1-year clinical outcomes in the SIRIUS trial: a randomized trial of a sirolimus-eluting stent versus a standard stent in patients at high risk for coronary restenosis. Circulation, 2004, 109(5): 634–640

    Article  PubMed  Google Scholar 

  21. Khan W, Farah S, Domb AJ. Drug eluting stents: developments and current status. J Control Release, 2012, 161(2): 703–712

    Article  PubMed  CAS  Google Scholar 

  22. Li W, Li Q, Qin L, etal. Rapamycin inhibits smooth muscle cell proliferation and obstructive arteriopathy attributable to elastin deficiency. Arterioscler Thromb Vase Biol, 2013, 33(5): 1028–1035

    Article  CAS  Google Scholar 

  23. Kim JA, Jang HJ, Martinez-Lemus LA, etal. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin-stimulated endothelial nitric oxide synthase and vasodilation. Am J Physiol Endocrinol Metab, 2012,302(2): E201-208

    Google Scholar 

  24. Hafizi S, Wang X, Chester AH, etal. ANG II activates effectors of mTOR via PI3-K signaling in human coronary smooth muscle cells. Am J Physiol Heart Circ Physiol, 2004,287(3): H1232-1238

    Google Scholar 

  25. Martin KA, Rzucidlo EM, Merenick BL, etal. The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation. Am J Physiol Cell Physiol, 2004,286(3): C507-517

    Google Scholar 

  26. Zuckermann A, Keogh A, Crespo-Leiro MG, etal. Randomized controlled trial of sirolimus conversion in cardiac transplant recipients with renal insufficiency. Am J Transplant, 2012, 12(9): 2487–2497

    Article  PubMed  CAS  Google Scholar 

  27. Ray JL, Leach R, Herbert JM, etal. Isolation of vascular smooth muscle cells from a single murine aorta. Methods Cell Sei, 2001, 23(4): 185–188

    Article  CAS  Google Scholar 

  28. Rodriguez-Vita J, Sanchez-Lopez E, Esteban V, etal. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation, 2005,1ll(19): 2509–2517

    Article  CAS  Google Scholar 

  29. Ghosh A, DiMusto PD, Ehrlichman LK, etal. The role of extracellular signal-related kinase during abdominal aortic aneurysm formation. J Am Coll Surg, 2012, 215(5): 668–680.el

    Article  PubMed  PubMed Central  Google Scholar 

  30. Moran CS, Jose RJ, Moxon JV, etal. Everolimus limits aortic aneurysm in the apolipoprotein E-deficient mouse by downregulating C-C chemokine receptor 2 positive monocytes. Arterioscler Thromb Vase Biol, 2013,33(4): 814–821

    Article  CAS  Google Scholar 

  31. Lawrence DM, Singh RS, Franklin DP, etal. Rapamycin suppresses experimental aortic aneurysm growth. J Vase Surg, 2004, 40(2): 334–338

    Article  Google Scholar 

  32. Lesauskaite V, Tanganelli P, Sassi C, etal. Smooth muscle cells of the media in the dilatative pathology of ascending thoracic aorta: morphology, immunoreactivity for osteopontin, matrix metalloproteinases, and their inhibitors. Hum Pathol, 2001, 32(9): 1003–1011

    Article  PubMed  CAS  Google Scholar 

  33. Martin KA, Merenick BL, Ding M, etal. Rapamycin promotes vascular smooth muscle cell differentiation through insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt2 feedback signaling. J Biol Chem, 2007, 282(49): 36 112–36 120

    Article  CAS  Google Scholar 

  34. Hayashi K, Takahashi M, Kimura K, etal. Changes in the balance of phosphoinositide 3-kinase/protein kinase B (Akt) and the mitogen-activated protein kinases (ERK/p38MAPK) determine a phenotype of visceral and vascular smooth muscle cells. J Cell Biol, 1999,145(4):727–740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kyaw M, Yoshizumi M, Tsuchiya K, etal. Antioxidants inhibit JNK and p38MAPK activation but not ERK1/2 activation by angiotensin IT in rat aortic smooth muscle cells. Hypertens Res, 2001, 24(3): 251–261

    Article  PubMed  CAS  Google Scholar 

  36. Griendling KK, Minieri CA, Ollerenshaw JD, etal. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res, 1994, 74(6): 1141–1148

    Article  PubMed  CAS  Google Scholar 

  37. Sano M, Fukuda K, Sato T, etal. ERK and p38 МАРК, but not NF-kappaB, are critically involved in reactive oxygen species-mediated induction of IL-6 by angiotensin II in cardiac fibroblasts. Circ Res, 2001, 89(8): 661–669

    Article  PubMed  CAS  Google Scholar 

  38. Wilkie N, Morton C, Ng LL, etal. Stimulated mitogen-activated protein kinase is necessary but not sufficient for the mitogenic response to angiotensin II. A role for phospholipase D. J Biol Chem, 1996, 271(50): 32 447–32 453

    Article  CAS  Google Scholar 

  39. Holm TM, Habashi JP, Doyle JJ, etal. Noncanonical TGFbeta signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science, 2011, 332(6027): 358–361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci, 2011, 36(6): 320–328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Chen  (陈 澍).

Additional information

This project was supported by grants from the National Natural Science Foundation of China (No. 81570325), and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ff., Shang, Xk., Du, Xl. et al. Rapamycin Treatment Attenuates Angiotensin II -induced Abdominal Aortic Aneurysm Formation via VSMC Phenotypic Modulation and Down-regulation of ERK1/2 Activity. CURR MED SCI 38, 93–100 (2018). https://doi.org/10.1007/s11596-018-1851-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-018-1851-z

Key words

Navigation