Skip to main content
Log in

Notch4 inhibition suppresses invasion and vasculogenic mimicry formation of hepatocellular carcinoma cells

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Vasculogenic mimicry (VM) is a process by which aggressive tumor cells generate non-endothelial cell-lined channels in malignant tumors including hepatocellular carcinoma (HCC). It has provided new insights into tumor behavior and has surfaced as a potential target for drug therapy. The molecular events underlying the process of VM formation are still poorly understood. In this study, we attempted to elucidate the relationship between Notch4 and VM formation in HCC. An effective siRNA lentiviral vector targeting Notch4 was constructed and transfected into Bel7402, a HCC cell line. VM networks were observed with a microscope in a 3 dimensional cell culture system. Cell migration and invasion were evaluated using wound healing and transwell assays. Matrix metalloproteinases (MMPs) activity was detected by gelatin zymography. Furthermore, the role of Notch4 inhibition in Bel7402 cells in vivo was examined in subcutaneous xenograft tumor model of mice. The results showed that downregulation of Notch4 destroyed VM network formation and inhibited migration and invasion of tumor cells in vitro (P<0.05). In vivo, tumor growth was also inhibited in subcutaneous xenograft model (P<0.05). The potential mechanisms might be related with down-regulation of MT1-MMP, MMP-2, MMP-9 expression and inhibition of the activation of MMP2 and MMP9. These results indicated that Notch4 may play an important role in VM formation and tumor invasion in HCC. Related molecular pathways may be used as novel therapeutic targets for HCC antiangiogenesis therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dome B, Hendrix MJ, Paku S, et al. Alternative vascularization mechanisms in cancer: Pathology and therapeutic implications. Am J Pathol, 2007,170(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim SK, Lee J, Song M, et al. Combination of three angiogenic growth factors has synergistic effects on sprouting of endothelial cell/mesenchymal stem cell-based spheroids in a 3D matrix. J Biomed Mater Res B Appl Biomater, 2016,104(8):1535–1543

    Article  CAS  PubMed  Google Scholar 

  3. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science, 2005,307(5706):58–62

    Article  CAS  PubMed  Google Scholar 

  4. Bugyik E, Renyi-Vamos F, Szabo V, et al. Mechanisms of vascularization in murine models of primary and metastatic tumor growth. Chin J Cancer, 2016,35:19

    Article  PubMed  PubMed Central  Google Scholar 

  5. Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol, 1999,155(3):739–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tan LY, Mintoff C, Johan MZ, et al. Desmoglein 2 promotes vasculogenic mimicry in melanoma and is associated with poor clinical outcome. Oncotarget, 2016,7(29): 46492–46508

    PubMed  PubMed Central  Google Scholar 

  7. Ravi M, Tentu S, Baskar G, et al. Molecular mechanism of anti-cancer activity of phycocyanin in triple-negative breast cancer cells. BMC Cancer, 2015,15:768

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yu L, Zhu B, Wu S, et al. Evaluation of the correlation of vasculogenic mimicry, ALDH1, KiSS-1, and MACC1 in the prediction of metastasis and prognosis in ovarian carcinoma. Diagn Pathol, 2017,12(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ahmadi SA, Moinfar M, Gohari Moghaddam K, et al. Practical application of angiogenesis and vasculogenic mimicry in prostatic adenocarcinoma. Arch Iran Med, 2010,13(6):498–503

    PubMed  Google Scholar 

  10. Yao N, Ren K, Wang Y, et al. Paris polyphylla suppresses proliferation and vasculogenic mimicry of human osteosarcoma cells and inhibits tumor growth in vivo. Am J Chin Med, 2017,45(3):575–598

    Article  PubMed  Google Scholar 

  11. Sun B, Zhang S, Zhang D, et al. Vasculogenic mimicry is associated with high tumor grade, invasion and metastasis, and short survival in patients with hepatocellular carcinoma. Oncol Rep, 2006,16(4):693–698

    CAS  PubMed  Google Scholar 

  12. Sun T, Zhao N, Zhao XL, et al. Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology, 2010,51(2):545–556

    Article  CAS  PubMed  Google Scholar 

  13. Sun D, Sun B, Liu T, et al. Slug promoted vasculogenic mimicry in hepatocellular carcinoma. J Cell Mol Med, 2013,17(8):1038–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cao Z, Sun B, Zhao X, et al. The expression and functional significance of Runx2 in hepatocellular carcinoma: its role in vasculogenic mimicry and epithelial-mesenchymal transition. Int J Mol Sci, 2017,18(3): E500

    Article  PubMed  Google Scholar 

  15. Hess AR, Margaryan NV, Seftor EA, et al. Deciphering the signaling events that promote melanoma tumor cell vasculogenic mimicry and their link to embryonic vasculogenesis: role of the Eph receptors. Dev Dyn, 2007,236(12):3283–3296

    Article  CAS  PubMed  Google Scholar 

  16. Nieto MA. Epithelial plasticity: a common theme in embryonic and cancer cells. Science, 2013,342(6159): 1234850

    Article  PubMed  Google Scholar 

  17. Zhou W, He Q, Zhang C, et al. BLOS2 negatively regulates Notch signaling during neural and hematopoietic stem and progenitor cell development. Elife, 2016,5:e18108

    PubMed  PubMed Central  Google Scholar 

  18. Purow B. Notch inhibition as a promising new approach to cancer therapy. Adv Exp Med Biol, 2012,727:305–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hardy KM, Kirschmann DA, Seftor EA, et al. Regulation of the embryonic morphogen Nodal by Notch4 facilitates manifestation of the aggressive melanoma phenotype. Cancer Res, 2010,70(24):10340–10350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu MS, Xu LB, Zeng H, et al. Association of Notch1 with vasculogenic mimicry in human hepatocellular carcinoma cell lines. Int J Clin Exp Pathol, 2014,7(9):5782–5791

    PubMed  PubMed Central  Google Scholar 

  21. Jue C, Lin C, Zhisheng Z, et al. Notch1 promotes vasculogenic mimicry in hepatocellular carcinoma by inducing EMT signaling. Oncotarget, 2017,8(2):2501–2513

    Article  PubMed  Google Scholar 

  22. Cheng R, Ke K, Cai Xinran, et al. Expression of NOTCH4 affects vasculogenic mimicry formation in hepatocellular carcimoma. J Clin Hepatol (Chinese), 2015,31(2):244–247

    Google Scholar 

  23. Liu W, Xu G, Ma J, et al. Osteopontin as a key mediator for vasculogenic mimicry in hepatocellular carcinoma. Tohoku J Exp Med, 2011,224(1):29–39

    Article  CAS  PubMed  Google Scholar 

  24. Stepien M, Fedirko V, Duarte-Salles T, et al. Prospective association of liver function biomarkers with development of hepatobiliary cancers. Cancer Epidemiol, 2016,40:179–187

    Article  PubMed  Google Scholar 

  25. Liu X, Zhang A, Xiang J, et al. miR-451 acts as a suppressor of angiogenesis in hepatocellular carcinoma by targeting the IL-6R-STAT3 pathway. Oncol Rep, 2016,36(3):1385–1392

    Article  CAS  PubMed  Google Scholar 

  26. Limaverde-Sousa G, Sternberg C, Ferreira CG. Antiangiogenesis beyond VEGF inhibition: a journey from antiangiogenic single-target to broad-spectrum agents. Cancer Treat Rev, 2014,40(4):548–557

    Article  CAS  PubMed  Google Scholar 

  27. Sun H, Zhang D, Yao Z, et al. Anti-angiogenic treatment promotes triple-negative breast cancer invasion via vasculogenic mimicry. Cancer Biol Ther, 2017,18(4): 205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Uyttendaele H, Ho J, Rossant J, et al. Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci USA, 2001,98(10):5643–5648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang JF, Chen Y, Qiu XX, et al. The vascular delta-like ligand-4 (DLL4)-Notch4 signaling correlates with angiogenesis in primary glioblastoma: an immunohistochemical study. Tumour Biol, 2016,37(3):3797–3805

    Article  CAS  PubMed  Google Scholar 

  30. Gramantieri L, Giovannini C, Lanzi A, et al. Aberrant Notch3 and Notch4 expression in human hepatocellular carcinoma. Liver Int, 2007,27(7):997–1007

    Article  CAS  PubMed  Google Scholar 

  31. Funahashi Y, Shawber CJ, Sharma A, et al. Notch modulates VEGF action in endothelial cells by inducing Matrix Metalloprotease activity. Vasc Cell, 2011,3(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mittal B, Mishra A, Srivastava A, et al. Matrix metalloproteinases in coronary artery disease. Adv Clin Chem, 2014,64:1–72

    Article  CAS  PubMed  Google Scholar 

  33. Maradni A, Khoshnevisan A, Mousavi SH, et al. Role of matrix metalloproteinases (MMPs) and MMP inhibitors on intracranial aneurysms: a review article. Med J Islam Repub Iran, 2013,27(4):249–254

    PubMed  PubMed Central  Google Scholar 

  34. Jablonska-Trypuc A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem, 2016, 31(sup1):177–183

    Article  CAS  PubMed  Google Scholar 

  35. Alcantara MB, Dass CR. Regulation of MT1-MMP and MMP-2 by the serpin PEDF: a promising new target for metastatic cancer. Cell Physiol Biochem, 2013,31(4-5): 487–494

    Article  CAS  PubMed  Google Scholar 

  36. Li Z, Takino T, Endo Y, et al. Activation of MMP-9 by membrane type-1 MMP/MMP-2 axis stimulates tumor metastasis. Cancer Sci, 2017,108(3):347–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-ling Chen  (陈燕凌).

Additional information

This work was supported by grants from the Sci-Tech Research Foundation of Fujian Province (No. 2011J05067) and the National Clinical Key Specialty Construction Project (General Surgery) of China (No. [2012]649).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, R., Cai, Xr., Ke, K. et al. Notch4 inhibition suppresses invasion and vasculogenic mimicry formation of hepatocellular carcinoma cells. CURR MED SCI 37, 719–725 (2017). https://doi.org/10.1007/s11596-017-1794-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-017-1794-9

Key words

Navigation