Skip to main content
Log in

Stereotactic injection of shrna GSK-3β-AAV promotes axonal regeneration after spinal cord injury

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Evidence suggested that glycogen synthase kinase-3β (GSK-3β) is involved in Nogo-66 inhibiting axonal regeneration in vitro, but its effect in vivo was poorly understood. We showed that stereotactic injection of shRNA GSK-3β-adeno associated virus (GSK-3β-AAV) diminished syringomyelia and promoted axonal regeneration after spinal cord injury (SCI), using stereotactic injection of shRNA GSK-3β-AAV (tested with Western blotting and RT-PCR) into the sensorimotor cortex of rats with SCI and by the detection of biotin dextran amine (BDA)-labeled axonal regeneration. We also determined the right position to inject into the sensorimotor cortex. Our findings consolidate the hypothesis that downregulation of GSK-3β promotes axonal regeneration after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. York EM, Petit A, Roskams AJ. Epigenetics of neural repair following spinal cord injury. Neurotherapeutics, 2013,10(4):757–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Filbin MT. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci, 2003,4(9):703–713

    Article  CAS  PubMed  Google Scholar 

  3. Finelli MJ, Wong JK, Zou H. Epigenetic regulation of sensory axon regeneration after spinal cord injury. J Neurosci, 2013,33(50):19664–19676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang C, Tu F, Zhang J Y, et al. E-cadherin-transfected neural stem cells transplantation for spinal cord injury in rats. J Huazhong Univ Sci Technolog Med Sci, 2014,34(4): 554–558

    Article  PubMed  Google Scholar 

  5. Ruschel J, Hellal F, Flynn KC, et al. Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science, 2015,348(6232):347–352

    CAS  PubMed  Google Scholar 

  6. Gao W, Yu LG, Liu YL, et al. Mechanism of GABA receptors involved in spasticity inhibition induced by transcranial magnetic stimulation following spinal cord injury. J Huazhong Univ Sci Technolog Med Sci, 2015,35(2): 241–247

    Article  CAS  PubMed  Google Scholar 

  7. Kottis V, Thibault P, Mikol D, et al. Oligodendrocyte-myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. J Neurochem, 2002,82(6):1566–1569

    Article  CAS  PubMed  Google Scholar 

  8. Schwab ME. Functions of Nogo proteins and their receptors in the nervous system. Nat Rev Neurosci, 2010,11(12):799–811

    Article  CAS  PubMed  Google Scholar 

  9. Grandpre T, Li S, Strittmatter SM. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature, 2002,417(6888):547–551

    Article  CAS  PubMed  Google Scholar 

  10. Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci, 2006,7(8):617–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu CM, Hur EM, Zhou FQ. Coordinating gene expression and axon assembly to control axon growth: potential role of gsk3 signaling. Front Mol Neurosci, 2012,5:3

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou FQ, Snider WD. Cell biology. GSK-3beta and microtubule assembly in axons. Science, 2005,308(5719): 211–214

    Article  CAS  PubMed  Google Scholar 

  13. Liz MA, Mar FM, Santos TE, et al. Neuronal deletion of GSK3beta increases microtubule speed in the growth cone and enhances axon regeneration via CRMP-2 and independently of MAP1B and CLASP2. BMC Biol, 2014,12:47

    Article  PubMed  PubMed Central  Google Scholar 

  14. Alabed YZ, Pool M, Ong TS, et al. GSK3 beta regulates myelin-dependent axon outgrowth inhibition through CRMP4. J Neurosci, 2010,30(16):5635–5643

    Article  CAS  PubMed  Google Scholar 

  15. Zhou FQ, Zhou J, Dedhar S, et al. NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron, 2004,42(6):897–912

    Article  CAS  PubMed  Google Scholar 

  16. Alabed YZ, Pool M, Ong TS, et al. GSK3 beta regulates myelin-dependent axon outgrowth inhibition through CRMP4. J Neurosci, 2010,30(16):5635–5643

    Article  CAS  PubMed  Google Scholar 

  17. Shen JY, Yi XX, Xiong NX, et al. GSK-3beta activation mediates Nogo-66-induced inhibition of neurite outgrowth in N2a cells. Neurosci Lett, 2011,505(2):165–170

    Article  CAS  PubMed  Google Scholar 

  18. Kawajiri H, Yashiro M, Shinto O, et al. A novel transforming growth factor beta receptor kinase inhibitor, A-77, prevents the peritoneal dissemination of scirrhous gastric carcinoma. Clin Cancer Res, 2008,14(9):2850–2860

    Article  CAS  PubMed  Google Scholar 

  19. Wang H, Shen J, Xiong N, et al. Protein kinase B is involved in Nogo-66 inhibiting neurite outgrowth in PC12 cells. Neuroreport, 2011,22(15):733–738

    Article  CAS  PubMed  Google Scholar 

  20. Hu Z, Tu J. The roads to mitochondrial dysfunction in a rat model of posttraumatic syringomyelia. Biomed Res Int, 2015,2015:831490

    PubMed  PubMed Central  Google Scholar 

  21. Bradbury EJ, Mcmahon SB. Spinal cord repair strategies: why do they work?. Nat Rev Neurosci, 2006,7(8):644–653

    Article  CAS  PubMed  Google Scholar 

  22. Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev, 1996,76(2):319–370

    CAS  PubMed  Google Scholar 

  23. Fitch MT, Doller C, Combs CK, et al. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci, 1999,19(19):8182–8198

    CAS  PubMed  Google Scholar 

  24. Dusart I, Schwab ME. Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci, 1994,6(5):712–724

    Article  CAS  PubMed  Google Scholar 

  25. Popovich PG, Guan Z, Wei P, et al. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol, 1999,158(2):351–365

    Article  CAS  PubMed  Google Scholar 

  26. Wei WJ, Yu ZY, Yang HJ, et al. Cellular expression profile of RhoA in rats with spinal cord injury. J Huazhong Univ Sci Technolog Med Sci, 2014,34(5):657–662

    Article  CAS  PubMed  Google Scholar 

  27. Bradbury EJ, Khemani S, Von R, et al. NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord. Eur J Neurosci, 1999,11(11):3873–3883

    Article  CAS  PubMed  Google Scholar 

  28. Qiu J, Cai D, Dai H, et al. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron, 2002,34(6): 895–903

    Article  CAS  PubMed  Google Scholar 

  29. Bregman BS, Kunkel-Bagden E, Schnell L, et al. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature, 1995,378(6556):498–501

    Article  CAS  PubMed  Google Scholar 

  30. Bradbury EJ, Moon LD, Popat RJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature, 2002, 416(6881):636–640

    Article  CAS  PubMed  Google Scholar 

  31. Seira O, Del RJ. Glycogen synthase kinase 3 beta (GSK3beta) at the tip of neuronal development and regeneration. Mol Neurobiol, 2014,49(2):931–944

    Article  CAS  PubMed  Google Scholar 

  32. Yoshimura T, Kawano Y, Arimura N, et al. GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell, 2005,120(1):137–149

    Article  CAS  PubMed  Google Scholar 

  33. Zhou FQ, Zhou J, Dedhar S, et al. NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron, 2004,42(6):897–912

    Article  CAS  PubMed  Google Scholar 

  34. Jiang H, Guo W, Liang X, et al. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell, 2005,120(1):123–135

    CAS  PubMed  Google Scholar 

  35. Wang T, Wu X, Yin C, et al. CRMP-2 is involved in axon growth inhibition induced by RGMa in vitro and in vivo. Mol Neurobiol, 2013,47(3):903–913

    Article  CAS  PubMed  Google Scholar 

  36. Dill J, Wang H, Zhou F, et al. Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. J Neurosci, 2008,28(36):8914–8928

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan-xiang Xiong  (熊南翔) or Hong-yang Zhao  (赵洪洋).

Additional information

This project was supported by the National Natural Science Foundation of China (No. 81371380).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Yc., Xiong, Nx. & Zhao, Hy. Stereotactic injection of shrna GSK-3β-AAV promotes axonal regeneration after spinal cord injury. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 36, 548–553 (2016). https://doi.org/10.1007/s11596-016-1623-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-016-1623-6

Keywords

Navigation