Skip to main content
Log in

IFN-γ secretion in gut of Ob/Ob mice after vertical sleeve gastrectomy and its function in weight loss mechanism

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Vertical sleeve gastrectomy (VSG) is becoming more and more popular among the world. Despite its dramatic efficacy, however, the mechanism of VSG remains largely undetermined. This study aimed to test interferon (IFN)-γ secretion n of mesenteric lymph nodes in obese mice (ob/ob mice), a model of VSG, and its relationship with farnesoid X receptor (FXR) expression in the liver and small intestine, and to investigate the weight loss mechanism of VSG. The wild type (WT) mice and ob/ob mice were divided into four groups: A (WT+Sham), B (WT+VSG), C (ob/ob+Sham), and D (ob/ob+VSG). Body weight values were monitored. The IFN-γ expression in mesenteric lymph nodes of ob/ob mice pre- and post-operation was detected by flow cytometry (FCM). The FXR expression in the liver and small intestine was detected by Western blotting. The mouse AML-12 liver cells were stimulated with IFN-γ at different concentrations in vitro. The changes of FXR expression were also examined. The results showed that the body weight of ob/ob mice was significantly declined from (40.6±2.7) g to (27.5±3.8) g on the 30th day after VSG (P<0.05). At the same time, VSG induced a higher level secretion of IFN-γ in mesenteric lymph nodes of ob/ob mice than that pre-operation (P<0.05). The FXR expression levels in the liver and small intestine after VSG were respectively 0.97±0.07 and 0.84±0.07 fold of GAPDH, which were significantly higher than pre-operative levels of 0.50±0.06 and 0.48±0.06 respectively (P<0.05). After the stimulation of AML-12 liver cells in vitro by different concentrations of IFN-γ (0, 10, 25, 50, 100, and 200 ng/mL), the relative FXR expression levels were 0.22±0.04, 0.31±0.04, 0.39±0.05, 0.38±0.05, 0.56±0.06, and 0.35±0.05, respectively, suggesting IFN-γ could distinctly promote the FXR expression in a dose-dependent manner in comparison to those cells without IFN-γ stimulation (P<0.05). It was concluded that VSG induces a weight loss in ob/ob mice by increasing IFN-γ secretion of mesenteric lymph nodes, which then increases the FXR expression of the liver and small intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA, 2004, 292(14): 1724–1737

    Article  CAS  PubMed  Google Scholar 

  2. Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes-3-year outcomes. N Engl J Med, 2014, 370(21): 2002–2013

    Article  PubMed  Google Scholar 

  3. Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature, 2014, 509(7499): 183–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xia Z, Wang G, Li H, et al. Influence of bariatric surgery on the expression of nesfatin-1 in rats with type 2 diabetes mellitus. Curr Pharm Des, 2015, 21,(11): 1464–1471

    Article  CAS  PubMed  Google Scholar 

  5. Yip S, Plank LD, Murphy R. Gastric bypass and sleeve gastrectomy for type 2 diabetes: a systematic review and meta-analysis of outcomes. Obes Surg, 2013, 23(12): 1994–2003

    Article  PubMed  Google Scholar 

  6. Stefater MA, Wilson-Perez HE, Chambers AP, et al. All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr Rev, 2012, (4): 595–622

    Article  Google Scholar 

  7. Myronovych A, Kirby M, Ryan kk, et al. Vertical sleeve gastrectomy reduces hepatic steatosis while increasing serum bile acids in a weight-loss-independent manner. Obesity (Silver Spring), 2013, 22(2): 390–400

    Article  Google Scholar 

  8. Kohli R, Bradley D, Setchell KD, et al. Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J Clin Endocrinol Metab, 2013, 98(4): E708–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gerhard GS, Styer AM, Wood GC, et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care, 2013, 36(7): 1859–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metab, 2013, 17(5): 657–669

    Article  PubMed  PubMed Central  Google Scholar 

  11. Keating N, Keely SJ. Bile acids in regulation of intestinal physiology. Curr Gastroenterol Rep, 2009, 11(5): 375–382

    Article  PubMed  Google Scholar 

  12. Fiorucci S, Mencarelli A, Palladino G, et al. Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol Sci, 2009, 30(11): 570–580

    Article  CAS  PubMed  Google Scholar 

  13. Furet J-P, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes, 2010, 59(12): 3049–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ley RE, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acd Sci USA, 2005, 102(31): 11070–11075

    Article  CAS  Google Scholar 

  15. Liou AP, Paziuk M, Luevano JM Jr, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med, 2013, 5(178): 178ra41

    Article  PubMed  PubMed Central  Google Scholar 

  16. Graessler J, Qin Y, Zhong H, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes:correlation with inflammatory and metabolic parameters. Pharmacogenomics J, 2012, 13(6): 514–522

    Article  PubMed  Google Scholar 

  17. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA, 2009, 106(7): 2365–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stefater MA, Wilson-Perez HE, Chambers AP, et al. All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr Rev, 2012, 33(4): 595–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakatani H, Kasama K, Oshiro T, et al. Serum bile acid along with plasma incretins and serum high molecular weight adiponectin levels are increased after bariatric surgery. Metabolism, 2009, 58(10): 1400–1407

    Article  CAS  PubMed  Google Scholar 

  20. Kliewer SA, Stimmel JB, Willson TM, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science, 1999, 284(5418): 1365–1368

    Article  PubMed  Google Scholar 

  21. Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science, 1999, 284(5418): 1362–1365

    Article  CAS  PubMed  Google Scholar 

  22. Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev, 2009, 89(1) 147–191

    Article  CAS  PubMed  Google Scholar 

  23. Cariou B, K van Harmelen, D Duran-Sandoval, et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem, 2006, 281(16): 11039–11049

    Article  CAS  PubMed  Google Scholar 

  24. Dong X, Zhao H, Ma X. Reduction in bile acids pool causes delayed liver regeneration accompanied by down-regulated expression of FXR and c-Jun mRNA in rats. J Huazhong Univ Sci Technolog Med Sci, 2010, 30(1): 55–60

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, FY Lee, G Barrera, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA, 2006, 103(40): 1006–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Porez G, Prawitt J, Gross B, et al. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J, Lipid Res, 2012, 53(9): 1723–1737

    Article  CAS  Google Scholar 

  27. Zhang Y, Kast-Woelbern HR, Edwards PA. Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J Biol Chem, 2003, 278(11): 104–110

    CAS  PubMed  Google Scholar 

  28. Duran-Sandoval D, Mautino G, Mar G, et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes, 2004, 53(4): 890–898

    Article  CAS  PubMed  Google Scholar 

  29. Cao R, Cronk ZXW, et al. Bile acids regulate hepatic gluconeogenic and farnesoid X receptor via Gi-protein-coupled receptors and the AKT pathway. J Lipid Res, 2010, 51(8): 2234–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chambers AP, Kirchner H, Wilson-Perezet HE, et al. The effects of vertical sleeve gastrectomy in rodents are ghrelin independent. Gastroenterology, 2013, 144(1): 50–52

    Article  CAS  PubMed  Google Scholar 

  31. Wilson-Perez HE, Chambers AP, Kirchner H, et al. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide-1 receptor deficiency. Diabetes, 2013, 62(7): 2380–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pories WJ. Bariatric surgery: risks and rewards. J Clin Endocrinol Metab, 2008, 93(11): S89–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Insull W Jr. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. South Med J, 2006, 99(3): 257–273

    Article  PubMed  Google Scholar 

  34. Turnbaugh PT, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature, 2009, 457(7228): 480–484

    Article  CAS  PubMed  Google Scholar 

  35. Bäckhed F, Manchester JK, Semenkovich C, et al. Mechanism underlying the resistance to diet-induced obesity in germ-free mice. Proc, Natl, Acad, Sci, USA, 2007, 104(3): 979–984

    Article  Google Scholar 

  36. Neyrinck AM, Possemiers S, Verstraete W, et al. Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitinglucan fiber improves host metabolic alterations induced by high-fat diet in mice. J Nutr Biochem, 2012, 23,(1): 51–59

    Article  CAS  PubMed  Google Scholar 

  37. Brodziak F, Meharg C, Blaut M, et al. Differences in mucosal gene expression in the colon of two inbred mouse strains after colonization with commensal gut bacteria. PLos One, 2013, 8(8): e72317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dewulf EM, Cani PD, Claus SP, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with insulin-type fructans in obese women. Gut, 2012, 62(8): 1112–1121

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hao Z, Münzberg H, Rezai-Zadeh K, et al. Leptin deficient ob/ob mice and diet-induced obese mice responded differently to Roux-en-Y bypass surgery. Intern J Obesity, 2015, 39(5): 798–805

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-feng Xia  (夏泽锋).

Additional information

This study was supported by grants from the National Natural Science Foundation of China (No. 81200276), the Hubei Provincial Natural Science Foundation of China (No. 2015CFB710), the Health and Family Planning Youth Project Foundation of Hubei Province, China (No. WJ2015Q001), the Research Fund of Union Hospital of Huazhong University of Science and Technology, China (No. 000003396), and the Research Fund of Public Welfare in Health Industry, 2014, Health and Family Planning Commission of China (No. 201402015), 2014, Health Ministry of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Jp., Wang, G., Hu, Cj. et al. IFN-γ secretion in gut of Ob/Ob mice after vertical sleeve gastrectomy and its function in weight loss mechanism. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 36, 377–382 (2016). https://doi.org/10.1007/s11596-016-1595-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-016-1595-6

Key words

Navigation