Skip to main content
Log in

Inhibitory effects of roscovitine on proliferation and migration of vascular smooth muscle cells in vitro

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are the major cause of in-stent restenosis (ISR). Intervention proliferation and migration of VSMCs is an important strategy for antirestenotic therapy. Roscovitine, a second-generation cyclin-dependent kinase inhibitor, can inhibit cell cycle of multiple cell types. We studied the effects of roscovitine on cell cycle distribution, proliferation and migration of VSMCs in vitro by flow cytometry, BrdU incorporation and wound healing assay, respectively. Our results showed that roscovitine increased the proportion of G0/G1 phase cells after 12 h (69.57±3.65 vs. 92.50±1.68, P=0.000), 24 h (80.87±2.24 vs. 90.25±0.79, P=0.000) and 48 h (88.08±3.86 vs. 88.87±2.43, P=0.427) as compared with control group. Roscovitine inhibited proliferation and migration of VSMCs in a concentration-dependent way. With the increase of concentration, roscovitine showed increased capacity for growth and migration inhibition. Roscovitine (30 μmol/L) led to an almost complete VSMCs growth and migration arrest. Combined with its low toxicity and selective inhibition to ISR-VSMCs, roscovitine may be a potential drug in the treatment of vascular stenosis diseases and particularly useful in the prevention and treatment of ISR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dorros G, Cowley MJ, Simpson J, et al. Percutaneous transluminal coronary angioplasty: report of complications from the National Heart, Lung, and Blood Institute PTCA Registry. Circulation, 1983, 67(4):723–730

    Article  CAS  PubMed  Google Scholar 

  2. Grech ED. ABC of interventional cardiology: percutaneous coronary intervention. I: history and development. BMJ, 2003, 326(7398):1080–1082

    Article  PubMed Central  PubMed  Google Scholar 

  3. Fischman DL, Leon MB, Baim DS, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med, 1994, 331(8):496–501

    Article  CAS  PubMed  Google Scholar 

  4. Gershlick AH. Role of stenting in coronary revascularisation. Heart, 2001, 86(1):104–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Komatsu R, Ueda M, Naruko T, et al. Neointimal tissue response at sites of coronary stenting in humans: macroscopic, histological, and immunohistochemical analyses. Circulation, 1998, 98(3):224–233

    Article  CAS  PubMed  Google Scholar 

  6. Bennett MR, O’sullivan M. Mechanisms of angioplasty and stent restenosis: implications for design of rational therapy. Pharmacol Ther, 2001, 91(2):149–166

    Article  CAS  PubMed  Google Scholar 

  7. Colombo A, Drzewiecki J, Banning A, et al. Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions. Circulation, 2003, 108(7):788–794

    Article  CAS  PubMed  Google Scholar 

  8. Dawkins KD, Grube E, Guagliumi G, et al. Clinical efficacy of polymer-based paclitaxel-eluting stents in the treatment of complex, long coronary artery lesions from a multicenter, randomized trial: support for the use of drug-eluting stents in contemporary clinical practice. Circulation, 2005, 112(21):3306–3313

    Article  CAS  PubMed  Google Scholar 

  9. Grube E, Silber S, Hauptmann KE, et al. TAXUS I: six- and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. Circulation, 2003, 107(1):38–42

    Article  CAS  PubMed  Google Scholar 

  10. Morice MC, Colombo A, Meier B, et al. Sirolimus- vs paclitaxel-eluting stents in de novo coronary artery lesions: the REALITY trial: a randomized controlled trial. JAMA, 2006, 295(8):895–904

    Article  CAS  PubMed  Google Scholar 

  11. Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med, 2002, 346(23):1773–1780

    Article  CAS  PubMed  Google Scholar 

  12. Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med, 2003, 349(14): 1315–1323

    Article  CAS  PubMed  Google Scholar 

  13. Schampaert E, Cohen EA, Schluter M, et al. The Canadian study of the sirolimus-eluting stent in the treatment of patients with long de novo lesions in small native coronary arteries (C-SIRIUS). J Am Coll Cardiol, 2004, 43(6):1110–1115

    Article  CAS  PubMed  Google Scholar 

  14. Stone GW, Ellis SG, Cannon L, et al. Comparison of a polymer-based paclitaxel-eluting stent with a bare metal stent in patients with complex coronary artery disease: a randomized controlled trial. JAMA, 2005, 294(10):1215–1223

    Article  CAS  PubMed  Google Scholar 

  15. Stone GW, Ellis SG, Cox DA, et al. One-year clinical results with the slow-release, polymer-based, paclitaxel-eluting TAXUS stent: the TAXUS-IV trial. Circulation, 2004, 109(16):1942–1947

    Article  CAS  PubMed  Google Scholar 

  16. Stone GW, Ellis SG, Cox DA, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med, 2004, 350(3):221–231

    Article  CAS  PubMed  Google Scholar 

  17. Weisz G, Leon MB, Holmes DR Jr., et al. Two-year outcomes after sirolimus-eluting stent implantation: results from the Sirolimus-Eluting Stent in de Novo Native Coronary Lesions (SIRIUS) trial. J Am Coll Cardiol, 2006, 47(7):1350–1355

    Article  CAS  PubMed  Google Scholar 

  18. Windecker S, Juni P. Safety of drug-eluting stents. Nat Clin Pract Cardiovasc Med, 2008, 5(6):316–328

    Article  CAS  PubMed  Google Scholar 

  19. Iakovou I, Schmidt T, Bonizzoni E, et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA, 2005, 293(17): 2126–2130

    Article  CAS  PubMed  Google Scholar 

  20. Imanishi T, Kobayashi K, Kuki S, et al. Sirolimus accelerates senescence of endothelial progenitor cells through telomerase inactivation. Atherosclerosis, 2006, 189(2):288–296

    Article  CAS  PubMed  Google Scholar 

  21. Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol, 2006, 48(1):193–202

    Article  PubMed  Google Scholar 

  22. Ong AT, Mcfadden EP, Regar E, et al. Late angiographic stent thrombosis (LAST) events with drug-eluting stents. J Am Coll Cardiol, 2005, 45(12):2088–2092

    Article  CAS  PubMed  Google Scholar 

  23. Goodyear S, Sharma MC. Roscovitine regulates invasive breast cancer cell (MDA-MB231) proliferation and survival through cell cycle regulatory protein cdk5. Exp Mol Pathol, 2007, 82(1):25–32

    Article  CAS  PubMed  Google Scholar 

  24. Mcclue SJ, Blake D, Clarke R, et al. In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). Int J Cancer, 2002, 102(5):463–468

    Article  CAS  PubMed  Google Scholar 

  25. Meijer L, Borgne A, Mulner O, et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem, 1997, 243(1–2):527–536

    Article  CAS  PubMed  Google Scholar 

  26. Raynaud FI, Whittaker SR, Fischer PM, et al. In vitro and in vivo pharmacokinetic-pharmacodynamic relationships for the trisubstituted aminopurine cyclin-dependent kinase inhibitors olomoucine, bohemine and CYC202. Clin Cancer Res, 2005, 11(13):4875–4887

    Article  CAS  PubMed  Google Scholar 

  27. Wesierska-Gadek J, Gueorguieva M, Wojciechowski J, et al. Cell cycle arrest induced in human breast cancer cells by cyclin-dependent kinase inhibitors: a comparison of the effects exerted by roscovitine and olomoucine. Pol J Pharmacol, 2004, 56(5):635–641

    Article  CAS  PubMed  Google Scholar 

  28. Benson C, White J, De Bono J, et al. A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days. Br J Cancer, 2007, 96(1):29–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Le Tourneau C, Faivre S, Laurence V, et al. Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies. Eur J Cancer, 2010, 46(18):3243–3250

    Article  PubMed  Google Scholar 

  30. O’sullivan M, Scott SD, Mccarthy N, et al. Differential cyclin E expression in human in-stent stenosis smooth muscle cells identifies targets for selective anti-restenosis therapy. Cardiovasc Res, 2003, 60(3):673–683

    Article  PubMed  Google Scholar 

  31. Qiao M, Shapiro P, Fosbrink M, et al. Cell cycle-dependent phosphorylation of the RUNX2 transcription factor by cdc2 regulates endothelial cell proliferation. J Biol Chem, 2006, 281(11):7118–7128

    Article  CAS  PubMed  Google Scholar 

  32. Thompson CC, Ashcroft FJ, Patel S, et al. Pancreatic cancer cells overexpress gelsolin family-capping proteins, which contribute to their cell motility. Gut, 2007, 56(1):95–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Milovanceva-Popovska M, Kunter U, Ostendorf T, et al. R-roscovitine (CYC202) alleviates renal cell proliferation in nephritis without aggravating podocyte injury. Kidney Int, 2005, 67(4):1362–1370

    Article  CAS  PubMed  Google Scholar 

  34. Wu PC, Tai MH, Hu DN, et al. Cyclin-dependent kinase inhibitor roscovitine induces cell cycle arrest and apoptosis in rabbit retinal pigment epithelial cells. J Ocul Pharmacol Ther, 2008, 24(1):25–33

    Article  CAS  PubMed  Google Scholar 

  35. Ljungman M, Paulsen MT. The cyclin-dependent kinase inhibitor roscovitine inhibits RNA synthesis and triggers nuclear accumulation of p53 that is unmodified at Ser15 and Lys382. Mol Pharmacol, 2001, 60(4):785–789

    CAS  PubMed  Google Scholar 

  36. Sroka IM, Heiss EH, Havlicek L, et al. A novel roscovitine derivative potently induces G1-phase arrest in platelet-deried growth factor-BB-activated vascular smooth muscle cells. Mol Pharmacol, 2010, 77(2):255–261

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-gao Lv  (吕家高).

Additional information

This project was supported by grants from the National Natural Science Foundation of China (Nos. 30870641 and 81030021), and the National Basic Research of China “973” Program (No. 2011CB504403).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Ss., Wang, W., Zhao, Cq. et al. Inhibitory effects of roscovitine on proliferation and migration of vascular smooth muscle cells in vitro . J. Huazhong Univ. Sci. Technol. [Med. Sci.] 34, 791–795 (2014). https://doi.org/10.1007/s11596-014-1354-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-014-1354-5

Key words

Navigation