Skip to main content
Log in

Detection of microvesicle miRNA expression in ALL subtypes and analysis of their functional roles

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Microvesicles (MVs) are the heterogeneous mixtures of vesicles. MVs released by leukemia cells constitute an important part of the leukemia microenvironment. MVs might act as important reservoirs of microRNAs (miRNAs). It is worth evaluating whether MVs possess some unique miRNA contents that are valuable in understanding the pathogenesis. In this study, we investigated the miRNA expression patterns of Nalm-6-derived MVs, Jurkat-derived MVs and normal cell-derived MVs using miRNA microarrays. The potential target genes regulated by differentially expressed miRNAs were also predicted and analyzed. Results demonstrated that 182 miRNAs and 166 miRNAs were differentially expressed in Nalm-6-MVs and Jurkat-MVs, respectively. Many oncogenes, tumor suppressors and signal pathway genes were targeted by these aberrantly expressed miRNAs, which might contribute to the development of B-ALL or T-ALL. Our findings expanded the potential diagnostic markers of ALL and provided useful information for ALL pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zwaal RF, Schroit AJ. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood, 1997,89(4):1121–1132

    PubMed  CAS  Google Scholar 

  2. Holme PA, Orvim U, Hamers MJ, et al. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler Thromb Vasc Biol, 1997,17(4):646–653

    Article  PubMed  CAS  Google Scholar 

  3. Aupeix K, Hugel B, Martin T, et al. The significance of shed membrane particles during programmed cell death in vitro, and in vivo, in HIV-1 infection. J Clin Invest, 1997,99(7):1546–1554

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Ratajczak J, Wysoczynski M, Hayek F, et al. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia, 2006,20(9):1487–1495

    Article  PubMed  CAS  Google Scholar 

  5. Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, et al. Tumour-derived microvesicles modulate biological activity of human monocytes. Immunol Lett, 2007,113(2):76–82

    Article  PubMed  CAS  Google Scholar 

  6. Bartel DP. MiRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  7. Lu J, Getz G, Miska EA, et al. MiRNA expression profiles classify human cancers. Nature, 2005,354(7043):834–838

    Article  Google Scholar 

  8. Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and MiRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 2007,9(6): 654–659

    Article  PubMed  CAS  Google Scholar 

  9. Rowley JD. Molecular genetics in acute leukemia. Leukemia, 2000,14(3):513–517

    Article  PubMed  CAS  Google Scholar 

  10. Thiel E, Kranz BR, Raghavachar A. Prethymic phenotype and genotype of pre-T(CD7+/ER−)-cell leukemia and its clinical significance within adult acute lymphoblastic leukemia. Blood, 1989,73(5):1247–1258

    PubMed  CAS  Google Scholar 

  11. Zhou B, Wang S, Mayr C, et al. miR-150, a miRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci U S A, 2007,104(17):7080–7085

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Martínez MC, Larbret F, Zobairi F, et al. Transfer of differentiation signal by membrane microvesicles harboring hedgehog morphogens. Blood, 2006,108(9):3012–3020

    Article  PubMed  Google Scholar 

  13. Zhang ZK, Davies KP, Allen J. Cell cycle arrest and repression of cyclin D1 transcription by INI1/hSNF5. Mol Cell Biol, 2002,22(16):5975–5988

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Le Baccon P, Leroux D, Dascalescu C, et al. Novel evidence of a role for chromosome 1 pericentric heterochromatin in the pathogenesis of B-cell lymphoma and multiple myeloma. Genes Chromosomes Cancer, 2001,32(3):250–264

    Article  PubMed  Google Scholar 

  15. Nagel S, Venturini L, Przybylski GK, et al. Activation of miR-17-92 by NK-like homeodomain proteins suppresses apoptosis via reduction of E2F1 in T-cell acute lymphoblastic leukemia. Leuk Lymphoma, 2009,50(1):101–108

    Article  PubMed  CAS  Google Scholar 

  16. Molitoris JK, McColl KS, Distelhorst CW. Glucocorticoid-mediated repression of the oncogenic MiRNA cluster miR-17∼92 contributes to the induction of Bim and initiation of apoptosis. Mol Endocrinol, 2011,25(3):409–420

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Grillari J, Hackl M, Grillari-Voglauer R. miR-17-92 cluster: ups and downs in cancer and aging. Biogerontology, 2010,11(4):501–506

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Martinez-Delgado B, Meléndez B, Cuadros M, et al. Expression profiling of T-cell lymphomas differentiates peripheral and lymphoblastic lymphomas and defines survival related genes. Clin Cancer Res, 2004,10(15):4971–4982

    Article  PubMed  CAS  Google Scholar 

  19. Bouillet P, Purton JF, Godfrey DI. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature, 2002,415(6874):922–926

    Article  PubMed  CAS  Google Scholar 

  20. Glittenberg M, Ligoxygakis P. CYLD: a multifunctional deubiquitinase. Fly (Austin), 2007,1(6):330–332

    Article  Google Scholar 

  21. Kraszewska MD, Dawidowska M, Kosmalska M. BCL11B, FLT3, NOTCH1 and FBXW7 mutation status in T-cell acute lymphoblastic leukemia patients. Blood Cells Mol Dis, 2013,50(1):33–38

    Article  PubMed  CAS  Google Scholar 

  22. Giambra V, Jenkins CR, Wang H. NOTCH1 promotes T cell leukemia-initiating activity by RUNX-mediated regulation of PKC-θ and reactive oxygen species. Nat Med, 2012, 18(11):1693–1698.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Johnstone RM. Exosomes biological significance: A concise review. Blood Cells Mol Dis, 2006,36(2):315–321

    Article  PubMed  CAS  Google Scholar 

  24. Sassen S, Miska EA, Caldas C. MiRNA: implications for cancer. Virchows Arch, 2008,452(1):1–10

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Zhu YD, Wang L, Sun C, et al. Distinctive MiRNA signature is associated with the diagnosis and prognosis of acute leukemia. Med Oncol, 2012,29(4):2323–2331

    Article  PubMed  CAS  Google Scholar 

  26. Zhang Y, Liao JM, Zeng SX, et al. p53 downregulates Down syndrome-associated DYRK1A through miR-1246. EMBO Rep, 2011,12(8):811–817

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Piepoli A, Tavano F, Copetti M, et al. miRNA expression profiles identify drivers in colorectal and pancreatic cancers. PLoS One, 2012,7(3):e33663

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-yu Li  (李慧玉).

Additional information

These authors contributed equally to this work.

This work was supported by the National Natural Science Foundation of China (No. 81170462).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Wy., Chen, Xm., Xiong, W. et al. Detection of microvesicle miRNA expression in ALL subtypes and analysis of their functional roles. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 34, 640–645 (2014). https://doi.org/10.1007/s11596-014-1330-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-014-1330-0

Key words

Navigation