Skip to main content
Log in

Preparation of ultra-nano talcum in sand mill and its application in the polypropylene

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The grinding of ultra-fine talcum powder and its application in a polypropylene (PP) matrix were investigated. Ultra-fine talcum powder was prepared by adjusting the grinding parameters of the physical milling process. The talcum powder exhibited polymodal distribution. The layered morphology of talcum particles in a horizontal sand mill was rarely damaged or destroyed. PP-talcum nanocomposites were prepared by melt blending using a twin-screw extruder. Nano talcum can be seen as a single particle, although it is not very apparent. The bending strength of talcum-filled PP was gradually increased by approximately 28%. The impact strength linearly decreased as the filler weight ratio increased. The overall maximum improvement in mechanical properties was recorded when the filler ratios increased from 15 wt% to 20 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J Zhang, J Fang, J L Wu, et al. Study on the Viscosity of Polypropylene Composites Filled With Different Size and Size Distribution CaCO3 [J]. Polym. Composite, 2011, 32:1 026–1 031

    CAS  Google Scholar 

  2. N A A Rahim, Z M Ariff, A Ariffin, et al. Study on Effect of Filler Loading on the Flow and Swelling Behaviors of Polypropylene-Kaolin Composites Using Single-Screw Extruder[J]. J. Appl. Polym. Sci., 2011, 119:73–78

    Article  Google Scholar 

  3. Y Jahani. Comparison of the Effect of Mica and Talc and Chemical Coupling on the Rheology Morphology, and Mechanical Properties of Polypropylene Composites[J]. Polym. Advan. Technol. 2011, 22:942–947

    Article  CAS  Google Scholar 

  4. S Mao, J Wang, C Qiu, et al. Modification of Polypropylene Composites Containing Potassium Titanate Whisker and Talcum[J]. J. Appl. Polym. Sci. 2010, 116:3 455–3 551

    CAS  Google Scholar 

  5. Y H Cui, X X Wang, Z Q Li, et al. Fabrication and Properties of Nano-ZnO/Glass-Fiber-Reinforced Polypropylene Composites[J]. J. Vinyl. Addit. Techn. 2010, 16:189–193

    CAS  Google Scholar 

  6. A Ariffin, A Mansor, S Jikan, et al. Evaluation of Hybridizing Talc and Surface-treated Kaolin on the Properties of PP Hybrid Composites[J]. J. Reinf. Plast. Comp. 2010, 29:3 429–3 432

    Article  CAS  Google Scholar 

  7. T Huuhilo, O Martikka, S Butylina, et al. Impact of Mineral Fillers to the Moisture Resistance of Wood-Plastic Composites [J]. Balt. For. 2010, 16(1):126–131

    Google Scholar 

  8. Azizi H, J Faghihi. An Investigation on the Mechanical and Dynamic Rheological Properties of Single and Hybrid Filler/Polypropylene Composites Based on Talc and Calcium Carbonate[J]. Polym. Composite, 2009, 30:1 743–1 749

    CAS  Google Scholar 

  9. B Mu, Q H Wang, Wang T M, et al. Preparation, Characterization and Properties of Polyamide 66/Maleic Anhydride-grafted-polypropylene/Clay Ternary Nanocomposites [J]. Macromol. Sci. B, 2009, 48:55–60

    Article  CAS  Google Scholar 

  10. M F Omar, H M Akil, Z A Ahmad. Mechanical Properties of Nanosilica/Polypropylene Composites Under Dynamic Compression Loading[J]. Polym. Composite. 2011, 32:565–570

    Article  CAS  Google Scholar 

  11. S P Liu. Studies on Morphology and Mechanical Properties of Dispersing Intercalated Silane Montmorillonite in Polypropylene Matrix [J]. Polym. Composite, 2011, 32:1 389–1 396

    CAS  Google Scholar 

  12. O H Lin, H M Akil, Z A M Ishak. Surface-Activated Nanosilica Treated With Silane Coupling Agents/Polypropylene Composites: Mechanical, Morphological, and Thermal Studies[J]. Polym. Composite, 2011, 32:1 568–1 571

    CAS  Google Scholar 

  13. P Etelaaho, S Haveri, R Jarvela. Comparison of the Morphology and Mechanical Properties of Unmodified and Surface-Modified Nanosized Calcium Carbonate in a Polypropylene Matrix [J]. Polym. Composite, 2011, 32:464–469

    Article  Google Scholar 

  14. A A El-Midany, S S Ibrahim. The Effect of Mineral Surface Nature on the Mechanical Properties of Mineral-filled Polypropylene Composites [J]. Polym. Bull. 2009, 64:387–392

    Article  Google Scholar 

  15. Z H Liu, J J Wang, H N Na, et al. Effect of Inorganic Fillers on Morphology and Mechanical Properties of PA66/POE-g-MAH/Filler Composites[J]. Macromol. Sci. B, 2011, 50:484–488

    Article  Google Scholar 

  16. M W Kim, S H Lee, J R Youn. Effects of Filler Size and Contenton Shrinkage and Gloss of Injection Molded PBT/PET/Talc Composites [J]. Polym. Composite, 2010, 31:1 020–1 026

    CAS  Google Scholar 

  17. Y W Leong, M B Abu Bakar, Z A M Ishak, et al. Effects of Filler Treatments on the Mechanical, Flow, Thermal, and Morphological Properties of Talc and Calcium Carbonate Filled Polypropylene Hybrid Composites [J]. J. Appl. Polym. Sci. 2005, 98:413–420

    Article  CAS  Google Scholar 

  18. H Shariatpanahi, F Sarabi, M Mirali, et al. Polypropylene-Organoclay Nanocomposite: Preparation, Microstructure, and Mechanical Properties [J]. J. Appl. Polym. Sci. 2009, 113:922–930

    Article  CAS  Google Scholar 

  19. J Miehé-Brendlé, M H Tuilier, C Marichal, et al. Mg Environments in the Octahedral Sheet of 2:1 Talc-Like Hybrid Phyllosilicates: A Comparative XAFS Study [J]. Eur. J. Inorg. Chem. 2010:5 587–5 598

    Google Scholar 

  20. J Li, J K Kim, M L Sham. Conductive Graphite Nanoplatelet/epoxy Nanocomposites: Effects of Exfoliation and UV/ozone Treatment of Graphite [J]. Scripta. Mater. 2005, 53:235–241

    Article  Google Scholar 

  21. M I Mahadi, S Palaniandy. Mechanochemical Effect of Dolomitic Talc During Fine Grinding Process in Mortar Grinder [J]. Int. J. Miner. Process. 2010, 94:172–178

    Article  CAS  Google Scholar 

  22. S Palaniandy, K A M Azizli. Mechanochemical Effects on Talc During Fine Grinding Process in a Jet Mill [J]. Int. J. Miner. Process. 2009, 92:22–28

    Article  CAS  Google Scholar 

  23. M Zbik, R S C Smart. Influence of Dry Grinding on Talc and Kaolinite Morphology: Inhibition of Nano-bubble Formation and Improved Dispersion [J]. Miner. Eng. 2005, 18:969–971

    Article  CAS  Google Scholar 

  24. G E Christidis, P Makri, V Perdikatsis. Influence of Grinding on the Structure and Colour Properties of Talc, Bentonite and Calcite White Fillers[J]. Clay. Miner. 2004, 39:163–168

    Article  CAS  Google Scholar 

  25. E Ferrage, G Seine, A C Gaillot, et al. Structure of the {001} Talc Surface as Seen by Atomic Force Microscopy: Comparison with X-ray and Electron Diffraction Results[J]. Eur. J. Mineral, 2006, 18:483–486

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Ding  (丁鹏).

Additional information

Funded by the Foundation of Shanghai Science and Technology Committee (Nos.10521100602, 10DZ2211400), Foundation of Guangdong Province (No.2011A090200082), China Postdoctoral Science Foundation, and Research Foundation for the Excellent Youth Scholars of Shanghai (No.SHU-10057)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, N., Zhang, X., Shi, L. et al. Preparation of ultra-nano talcum in sand mill and its application in the polypropylene. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 28, 12–16 (2013). https://doi.org/10.1007/s11595-013-0631-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-013-0631-7

Key words

Navigation