Skip to main content
Log in

Effects of nitrogen doping on microstructure and photocatalytic activity of nanocrystalline TiO2 powders

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Nitrogen-doped TiO2 nanocrystalline powders were prepared by hydrolysis of tetrachloride titanium (TiCl4) in a mixed solution of ethanol and ammonium nitrate (NH4NO3) at ambient temperature and atmosphere followed by calcination at 400 °C for 2 h in air. FTIR spectra demonstrate that amine group in original gel is eliminated by calcination, and the TiO2 powder is liable to absorb water onto its surface and into its capillary pore. XRD and SEM results show that the average size of nanocrystalline TiO2 particles is no more than 60 nm and with increasing the calcination temperature, the size of particles increases. XPS studies indicate the nitrogen atom enters into the TiO2 lattice and occupies the position of oxygen atom. The nitrogen doping not only depresses the grain growth of TiO2 particles, but also reduces the phase transformation temperature of anatase to rutile. The photocatalytic activity of the nitrogen-doped TiO2 powders has been evaluated by experiments of photocatalytic degradation aqueous methylene blue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K Honda, A Fujishima. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972, 238(5 358): 37–38

    Article  Google Scholar 

  2. U Diebold. The Surface Science of Titanium Dioxide[J]. Surf. Sci. Rep., 2003, 48(5–8): 53–229

    Article  CAS  Google Scholar 

  3. M R Hoffmann, S T Martin, W Y Choi, et al. Environmental Applications of Semiconductor Photocatalysis[J]. Chem. Rev., 1995, 95(1): 69–96

    Article  CAS  Google Scholar 

  4. A W Grant, C T Campbell. Cesium Adsorption on TiO2(110)[J]. Phys. Rev. B, 1997, 55(3): 1 844–1 850

    Article  CAS  Google Scholar 

  5. J H Wei, X J Zhao, J Xiao, et al. Preparation and Properties of Ag-TiO2 Thin Films on Glass Substrates[J]. J. Wuhan Univ. Tech.-Mater. Sci. Ed., 2002, 17(3): 21–23

    Article  Google Scholar 

  6. R Asahi, T Morikawa, T Ohwaki, et al. Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides[J]. Science, 2001, 293(5 528): 269–271

    Article  CAS  Google Scholar 

  7. T Morikawa, R Asahi, T Ohwaki, et al. Band-gap Narrowing of Titanium Dioxide by Nitrogen Doping[J]. Jpn. J. Appl. Phys. 2, 2001, 40(6A): L561–L563

    Article  CAS  Google Scholar 

  8. S Yin, H Yamaki, M Komatsu, et al. Preparation of Nitrogen-doped Titania with High Visible Light Induced Photocatalytic Activity by Mechanochemical Reaction of Titania and Hexamethylene-tetramine[J]. J. Mater. Chem., 2003, 13(12): 2 996–3 001

    Article  CAS  Google Scholar 

  9. T Ihara, M Miyoshi, Y Iriyama, et al. Visible-light-active Titanium Oxide Photocatalyst Realized by an Oxygen-deficient Structure and by Nitrogen Doping[J]. Appl. Catal. B-Environ., 2003, 42(4): 403–409

    Article  CAS  Google Scholar 

  10. J G Yu, J C Yu, X J Zhao. The Effect of SiO2 Addition on the Grain Size and Photocatalytic Activity of TiO2 Thin Films[J]. J. Sol-Gel Sci. Techn., 2002, 24(2):95–103

    Article  CAS  Google Scholar 

  11. J G Yu, J F Xiong, B Cheng, et al. Fabrication and Characterization of Ag-TiO2 Multiphase Nanocomposite Thin Films with Enhanced Photocatalytic Activity[J]. Appl. Catal. B-Environ., 2005, 60(3–4): 211–221

    Article  CAS  Google Scholar 

  12. H E Chao, Y U Yun, X F Hu, et al. Effect of Silver Doping on the Phase Transformation and Grain Growth of Sol-Gel Titania Powder[J]. J. Eur. Ceram. Soc., 2003, 23(9):1 457–1 464

    Article  CAS  Google Scholar 

  13. J G Yu, J C Yu, B Cheng, et al. Photocatalytic Activity and Characterization of the Sol-Gel Derived Pb-Doped TiO2 Thin Films[J]. J. Sol-Gel Sci. Techn., 2002, 24(1):39–48

    Article  CAS  Google Scholar 

  14. Y C Hong, C U Bang, D H Shin, et al. Band Gap Narrowing of TiO2 by Nitrogen Doping in Atmospheric Microwave Plasma[J].Chem. Phys. Lett., 2005, 413(4–6):454–457

    Article  CAS  Google Scholar 

  15. C D Wagner, W M Riggs, L E Davis, et al. Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division[M]. Perkin-Elmer Corporation, Eden Prairie, Minnesota, 1979:68

    Google Scholar 

  16. Z P Wang, W M Cai, X T Hong, et al. Photocatalytic Degradation of Phenol in Aqueous Nitrogen-doped TiO2 Suspensions With Various Light Sources[J]. Appl. Catal. B-Environ., 2005, 57(3):223–231

    Article  CAS  Google Scholar 

  17. N P Hua, Z Y Wu, Y K Du, et al. Titanium Dioxide Nanoparticles Codoped with Pt and N for Photodegradation of Cl3CCOOH[J]. Acta Phys.-Chim. Sin., 2005, 21(10):1 081–1 085 (in chinese)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhiyuan  (杨志远).

Additional information

Supported by National Natural Science Foundation of China (No. 20276056) and Shaanxi Natural Science Foundation (No. 2003E225)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Zhou, A. Effects of nitrogen doping on microstructure and photocatalytic activity of nanocrystalline TiO2 powders. J. Wuhan Univ. Technol. 22, 457–461 (2007). https://doi.org/10.1007/s11595-006-3457-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-006-3457-8

Key words

Navigation