Skip to main content
Log in

Na-doped LiNi1/3Co1/3Mn1/3O2 with enhanced rate performance as a cathode for Li-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The applications of LiNi1/3Co1/3Mn1/3O2 (LNCM111) can be expanded if its electrochemical performance is improved. In this study, LNCM111–xNa samples with different Na-doping concentrations were successfully prepared by solid-phase and hydrothermal methods as a cathode material for Li-ion batteries. The effect of Na doping on the structures and electrochemical properties of the resultant layered oxide cathode materials was then investigated. The crystalline structure and morphology of the materials were characterized by powder X-ray diffraction and scanning electron microscopy, respectively. The results of these analyses indicated that all of the synthesized materials were free of impurities and Na doping did not change the LNCM111 structure. Moreover, a proper doping concentration can reduce the degree of cation mixing in the samples. These findings collectively indicate that LNCM111–0.1Na is a promising material with potential applications in high-performance batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheng R, Zhou M, Zhang K, Xu F, Sun L, Lin Q, Li H (2021) Enhanced electrochemical performance of LiNi1/3CO1/3Mn1/3O2 cathode material by Al2O3 surface coating derived via NH2-Mil-53(Al) MOF. J Alloys Compd 875. https://doi.org/10.1016/j.jallcom.2021.159956,159956

  2. Luo B, Jiang B, Peng P, Huang J, Chen J, Li M, Chu L, Li Y (2019) Improving the electrochemical performance of LiNi1/3CO1/3Mn1/3O2 cathode material via tungsten modification. Electrochim Acta 297:398–405. https://doi.org/10.1016/j.electacta.2018.11.202

    Article  CAS  Google Scholar 

  3. Lv F, Cheng H, Nie W, Sun Q, Liu Y, Duan T, Xu Q, Lu X (2021) Enhancing rate capacity and cycle stability of LiNi1/3CO1/3Mn1/3O2 cathode material by laminar V2O5 coating for lithium-Ion Batteries. ChemistrySelect 6:6339–6347. https://doi.org/10.1002/slct.202101306

    Article  CAS  Google Scholar 

  4. Su C, Guo P, Xu L (2020) Preparation of Li (tri-(4-carboxyphenyl) amine) doped polypyrrole as cathode material of lithium ion batteries and its electrochemical performances. Solid State Ionics 349. https://doi.org/10.1016/j.ssi.2020.115295,115295

  5. Ren X, Du J, Pu Z, Wang R, Gan L, Wu Z (2020) Facile synthesis of Li2MoO4 coated LiNi1/3CO1/3Mn1/3O2 composite as a novel cathode for high-temperature lithium batteries. Ionics 26:1617–1627. https://doi.org/10.1007/s11581-020-03474-z

    Article  CAS  Google Scholar 

  6. Wang J, Wang Y, Guo Y, Liu C, Dan L (2014) Electrochemical characterization of AlPO4 coated LiNi1/3CO1/3Mn1/3O2 cathode materials for high temperature lithium battery application. Rare Met 40:1–6. https://doi.org/10.1007/s12598-014-0247-x

    Article  CAS  Google Scholar 

  7. Zeng W, Chen Q, Li Y, Chen C, Liu X, Yuan M, Wang R, Chen S, Xiao S (2020) Enhanced electrochemical performances of LiNi0.8Co0.1Mn0.1O2 by synergistic modification of sodium ion doping and silica coating. Solid State Ionics 346:115214. https://doi.org/10.1016/j.ssi.2019.115214

    Article  CAS  Google Scholar 

  8. Zhang Z, Yu M, Yang B, Jin C, Guo G, Qiu J (2020) Regeneration of Al-doped LiNi1/3Co1/3Mn1/3O2 cathode material via a sustainable method from spent Li-ion batteries. Mater Res Bull 126.https://doi.org/10.1016/j.materresbull.2020.110855,110855

  9. Fan X, Li Y, Wang J, Gou L, Zhao P, Li D, Huang L, Sun S (2010) Synthesis and electrochemical performance of porous Li2FeSiO4/C cathode material for long-life lithium-ion batteries. J Alloys Compd 493:77–80. https://doi.org/10.1016/j.jallcom.2009.12.179

    Article  CAS  Google Scholar 

  10. He Y, Li Y, Xu C, Zhu M, Li W (2020) Improvement in the cycling stability and rate capability of LiNi0.5Co0.2Mn0.3O2 cathode material via the use of a Ta2O5 coating. Ceram Int 46:14931–14939. https://doi.org/10.1016/j.ceramint.2020.03.020

    Article  CAS  Google Scholar 

  11. Zhang X, Hu G, Peng Z, Cao Y, Li L, Tan C, Wang Y, Wang W, Du K (2021) Synthesis and characterization of mono-dispersion LiNi0.8Co0.1Mn0.1O2 micrometer particles for lithium-ion batteries. Ceram Int 47:25680–25688. https://doi.org/10.1016/j.ceramint.2021.05.294

    Article  CAS  Google Scholar 

  12. Chen Y, Wang S, Jie Y, Lei Z, Cao R, Jiao S (2021) Synthesis and electrochemical investigation of O3-type high-nickel NCM cathodes for sodium-ion batteries. Chem Res Chin Univ 37:280–285. https://doi.org/10.1007/s40242-021-0441-y

    Article  CAS  Google Scholar 

  13. Liu Z, Li J, Zhu M, Wang L, Kang Y, Dang Z, Yan J, He X (2021) Enhanced structural stability and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by Ga doping. Materials (Basel) 14:1816. https://doi.org/10.3390/ma14081816

    Article  CAS  PubMed Central  Google Scholar 

  14. Park CW, Lee JH, Seo JK, Ran WTA, Whang D, Hwang SM, Kim YJ (2021) Graphene/PVDF composites for Ni-rich oxide cathodes toward high-energy density Li-ion batteries. Materials (Basel) 14:2271–2271. https://doi.org/10.3390/ma14092271

    Article  CAS  Google Scholar 

  15. Song Y, Wang M, Li J, Cui H, Su H, Liu Y (2021) Controllable synthesis of LiNi1/3CO1/3Mn1/3O2 electrode material via a high shear mixer-assisted precipitation process. Chem Eng J 419. https://doi.org/10.1016/j.cej.2021.129281,129281

  16. Li B, Li G, Zhang D, Fan J, Chen D, Liu X, Feng T, Li L (2020) Zeolitic imidazolate Framework-8 modified LiNi1/3Co1/3Mn1/3O2: a durable cathode showing excellent electrochemical performances in Li-ion batteries. Electrochim Acta 336. https://doi.org/10.1016/j.electacta.2020.135724,135724

  17. Liu W, Sun X, Zhang X, Li C, Wang K, Wen W, Ma Y-W (2021) Structural evolution of mesoporous graphene/LiNi(1/3)Co(1/3)Mn(1/3)O2 composite cathode for Li-ion battery. Rare Met 40:521–528. https://doi.org/10.1007/s12598-020-01406-4

    Article  CAS  Google Scholar 

  18. Li Y, Li Y, Zhong S, Li F, Yang J (2011) Synthesis and electrochemical properties of Y-doped LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion battery. Integr Ferroelectr 127:150–156. https://doi.org/10.1080/10584587.2011.575736

    Article  CAS  Google Scholar 

  19. Yv L, Wang J, Li X, Dai L, Shao Z (2021) Preparation and electrochemic properties of Ti-doped LiNi1/3Co1/3Mn1/3O2 cathode materials via co-precipitation route. Ionics 27:3769–3776. https://doi.org/10.1007/s11581-021-04131-9

    Article  CAS  Google Scholar 

  20. Gao P, Yang G, Liu H, Wang L, Zhou H (2012) Lithium diffusion behavior and improved high rate capacity of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium batteries. Solid State Ionics 207:50–56. https://doi.org/10.1016/j.ssi.2011.11.020

    Article  CAS  Google Scholar 

  21. Chen Z, Chao D, Chen M, Shen Z (2020) Hierarchical porous LiNi1/3Co1/3Mn1/3O2 with yolk-shell-like architecture as stable cathode material for lithium-ion batteries. RSC Adv 10:18776–18783. https://doi.org/10.1039/D0RA03022H

    Article  CAS  Google Scholar 

  22. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935. https://doi.org/10.1126/science.1212741

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Z, Huang B, Wang M, Yang X, Gu Y (2019) Facile synthesis of fluorine doped single crystal Ni-rich cathode material for lithium-ion batteries. Solid State Ionics 342. https://doi.org/10.1016/j.ssi.2019.115065,115065

  24. Li N, An R, Su Y, Wu F, Bao L, Chen L, Zheng Y, Shou H, Chen S (2013) The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries. J Mater Chem A 1:9760–9767. https://doi.org/10.1039/C3TA11665D

    Article  CAS  Google Scholar 

  25. Zhu L, Xie L, Bao C, Yan X, Cao X (2020) LiNi1/3Co1/3Mn1/3O2/polypyrrole composites as cathode materials for high-performance lithium-ion batteries. Int J Energy Res 44:298–308. https://doi.org/10.1002/er.4916

    Article  CAS  Google Scholar 

  26. Zhang T, Mao Z, Shi X, Jin J, He B, Wang R, Gong Y, Wang H (2021) Tissue-derived carbon microbelt paper: a high-initial-coulombic-efficiency and low-discharge-platform K+ -storage anode for 4.5-V hybrid capacitors. Energy Environ Sci 15:158–168. https://doi.org/10.1039/D1EE03214C

    Article  Google Scholar 

  27. Du K, Huang J, Cao Y, Peng Z, Hu G (2013) Study of effects on LiNi0.8Co0.15Al0.05O2 cathode by LiNi1/3Co1/3Mn1/3O2 coating for lithium ion batteries. J Alloys Compd 574:377–382. https://doi.org/10.1016/j.jallcom.2013.05.134

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Research Program of Application Foundation of Qinghai Province (No. 2019-ZJ-7013) and the Nanomaterials and Nanotechnology PI Research and Innovation Team Project of Qinghai Minzu University (2021–2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Long Xie.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 371 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, LF., Xie, YL. Na-doped LiNi1/3Co1/3Mn1/3O2 with enhanced rate performance as a cathode for Li-ion batteries. Ionics 28, 2117–2123 (2022). https://doi.org/10.1007/s11581-022-04515-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04515-5

Keywords

Navigation