Skip to main content
Log in

Construction of porous carbon nanofibers with encapsulated sulfur as free-standing cathode material of lithium-sulfur batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Carbon material is regarded as an ideal cathode material carrier for lithium-sulfur (Li–S) batteries. Reasonably designing the structure of carbon host plays the key role to alleviate the shuttle effect of polysulfide and improve specific capacity and cycle stability of Li–S batteries. Herein, a free-standing host consists of porous carbon nanofibers (PCNFs) has been prepared by electrospinning technology using zinc acetate as pore-forming agent, which was directly applied as cathode material for Li–S battery after sulfur encapsuled (47.8 wt% sulfur content). The obtained sulfur cathode exhibits charge and discharge capacities of 744 and 726 mAh g−1 at 0.1 C (1 C = 1675 mA g−1) after 150 cycles and possesses a low capacity decay rate (0.09%) during each cycle. The good electrochemical properties of sulfur cathode can be ascribed to the presence of PCNFs free-standing substrate, which offers abundant pores to accommodate sulfur and inhibits the shuttle effect of polysulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wei YH, Wang BY, Zhang Y, Zhang M, Wang Q, Zhang Y, Wu H (2020) Rational design of multifunctional integrated host configuration with lithiophilicity-sulfiphilicity toward high-performance Li-S full batteries. Adv Funct Mater 31:2006033. https://doi.org/10.1002/adfm.202006033

    Article  CAS  Google Scholar 

  2. Zeng ZP, Li W, Chen XJ, Liu XB (2020) Bifunctional 3D hierarchical hairy foam toward ultrastable lithium/sulfur electrochemistry. Adv Funct Mater 30:2004650. https://doi.org/10.1002/adfm.202004650

    Article  CAS  Google Scholar 

  3. Sun ZT, Jiang YC, Cong Z, Zhao B, Shen F, Han XG (2021) Ultra-fast and facile preparation of uniform sulfur/graphene composites with microwave for lithium-sulfur batteries. Nanotechnology 32:285401. https://doi.org/10.1088/1361-6528/abf4a8

    Article  CAS  Google Scholar 

  4. Huang PF, Li CF, Wang YW, Dang B (2021) The preparation and electrochemical performance study of the carbon nanofibers/sulfur composites. Ionics 27:2609–2613. https://doi.org/10.1007/s11581-021-04039-4

    Article  CAS  Google Scholar 

  5. Yanilmaz M, Asiri A, Zhang XW (2020) Centrifugally spun porous carbon microfibers as interlayer for Li-S batteries. J Mater Sci 55:3538–3548. https://doi.org/10.1007/s10853-019-04215-y

    Article  CAS  Google Scholar 

  6. Ma DY, Zhu RX, Ruan FX, Sonamuthu J, Zhang Q, Sun MT, Li HM, Cai YR (2020) Rational design of hierarchical C-MgO@ZnO nanofiber as sulfur host for high-performance lithium-sulfur batteries. J Mater Sci 55:5534–5544. https://doi.org/10.1007/s10853-020-04390-3

    Article  CAS  Google Scholar 

  7. Ren WC, Ma W, Umair MM, Zhang SF, Tang BT (2018) CoO/Co-activated porous carbon cloth cathode for high performance lithium sulfur batteries. Chemsuschem 11:2695–2702. https://doi.org/10.1002/cssc.201801212

    Article  CAS  PubMed  Google Scholar 

  8. Fan HL (2021) Improved polysulfide adsorption by using honeycomb-like titanium dioxide boxes as efficient sulfur hosts for advanced lithium-sulfur batteries. Ionics 27:2011–2016. https://doi.org/10.1007/s11581-021-03972-8

    Article  CAS  Google Scholar 

  9. Gao PB, Xu SX, Chen ZW, Huang X, Bao ZH, Lao CS, Wu GM, Mei YF (2018) Flexible and hierarchically structured sulfur composite cathode based on the carbonized textile for high-performance Li-S batteries. ACS Appl Mater Inter 10:3938–3947. https://doi.org/10.1021/acsami.7b16174

    Article  CAS  Google Scholar 

  10. Yao SS, Zhang CJ, Xie FW, Xue XK, Gao KD, Guo RD, Shen XQ, Li TB, Qin SB (2020) Hybrid membrane with SnS2 nanoplates decorated nitrogen-doped carbon nanofibers as binder-Free electrodes with ultrahigh sulfur loading for lithium sulfur batteries. ACS Sustain Chem Eng 8:2707–2715. https://doi.org/10.1021/acssuschemeng.9b06064

    Article  CAS  Google Scholar 

  11. Wang C, Yi YK, Li HP, Wu PW, Li MT, Jiang W, Chen ZG, Li HM, Zhu WS, Dai S (2019) Rapid gas-assisted exfoliation promises V2O5 nanosheets for high performance lithium-sulfur batteries. Nano Energy 67:104253. https://doi.org/10.1016/j.nanoen.2019.104253

    Article  CAS  Google Scholar 

  12. Rajkumar P, Diwakar K, Subadevi R, Gnanamuthu RM, Wang FM, Sivakumar M (2020) Micro/mesoporous nature of carbon nanofiber/silica matrix as an effective sulfur host for rechargeable lithium-sulfur batteries. J Phys D Appl Phys 53:265501. https://doi.org/10.1088/1361-6463/ab8137

    Article  CAS  Google Scholar 

  13. Xu ZL, Huang JQ, Chong WG, Qin XY, Wang XY, Zhou LM, Kim JK (2017) In situ TEM study of volume expansion in porous carbon nanofiber/sulfur cathodes with exceptional high-rate performance. Adv Energy Mater 7:1602078. https://doi.org/10.1002/aenm.201602078

    Article  CAS  Google Scholar 

  14. Zhong Y, Chao DL, Deng SJ, Zhan JY, Fang RY, Xia Y, Wang YD, Wang XL, Xia XH, Tu JP (2018) Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries. Adv Funct Mater 28:1706391. https://doi.org/10.1002/adfm.201706391

    Article  CAS  Google Scholar 

  15. Zhang QF, Qiao ZS, Cao XR, Qu BH, Yuan J, Fan TE, Zheng HF, Cui JQ, Wu SQ, Xie QS, Peng DL (2020) Rational integration of spatial confinement and polysulfide conversion catalysts for high sulfur loading lithium-sulfur batteries. Nanoscale Horiz 5:720–729. https://doi.org/10.1039/c9nh00663j

    Article  CAS  PubMed  Google Scholar 

  16. He YS, Li MJ, Zhang YG, Shan ZZ, Zhao Y, Li J, Liu JH, Liang CY, Bakenov Z, Li Q (2020) All-purpose electrode design of flexible conductive scaffold toward high-permanence Li-S batteries. Adv Funct Mater 30:2000613. https://doi.org/10.1002/adfm.202000613

    Article  CAS  Google Scholar 

  17. Yan YL, Lin JM, Chen SY, Zhang SX, Yang R, Xu YH, Han T (2020) Investigation on the electrochemical properties of antimony tin oxide nanoparticle-modified graphene aerogel as cathode matrix in lithium-sulfur battery. JNN 20:7027–7033. https://doi.org/10.1166/jnn.2020.18825

    Article  CAS  Google Scholar 

  18. Zhang YZ, Zhang Z, Liu S, Li GR, Gao XP (2018) Free-standing porous carbon nanofiber/carbon nanotube film as sulfur immobilizer with high areal capacity for lithium-sulfur battery. ACS Appl Matere Inter 10:8749–8757. https://doi.org/10.1021/acsami.8b00190

    Article  CAS  Google Scholar 

  19. Zhang W, Zhang JF, Zhao Y, Wang X (2019) Multi-functional carbon cloth infused with N-doped and Co-coated carbon nanofibers as a current collector for ultra-stable lithium-sulfur batteries. Mater Lett 255:126595. https://doi.org/10.1016/j.matlet.2019.126595

    Article  CAS  Google Scholar 

  20. Li Q, Guo JN, Zhao J, Wang CC, Yan F (2019) Porous nitrogen-doped carbon nanofibers assembled with nickel nanoparticles for lithium-sulfur batteries. Nanoscale 11:647–655. https://doi.org/10.1039/c8nr07220e

    Article  CAS  PubMed  Google Scholar 

  21. Zhou XX, Ma XT, Ding CM, Meng WJ, Xu SD, Chen L, Duan DH, Liu SB (2019) A 3D stable and highly conductive scaffold with carbon nanotubes/carbon fiber as electrode for lithium sulfur batteries. Mater Lett 251:180–183. https://doi.org/10.1016/j.matlet.2019.04.035

    Article  CAS  Google Scholar 

  22. Long T, Meng FC, Xu L, Zhao YX, Liu WL, Wei XF, Zheng LX, Liu JH (2020) Nitrogen-doped carbon nanotubes intertwined with porous carbon with enhanced cathode performance in lithium-sulfur batteries. Sustain Energ Fuels 4:3926–3933. https://doi.org/10.1039/d0se00583e

    Article  CAS  Google Scholar 

  23. Shao QJ, Lu PF, Xu L, Guo DC, Gao J, Wu ZS, Chen J (2020) Rational design of MoS2 nanosheets decorated on mesoporous hollow carbon spheres as a dual-functional accelerator in sulfur cathode for advanced pouch-type Li-S batteries. J Energy Chem 51:262–271. https://doi.org/10.1016/j.jechem.2020.03.035

    Article  Google Scholar 

  24. Hou JH, Tu XY, Wu XG, Shen M, Wang XZ, Wang CY, Cao CB, Peng H, Wang GX (2020) Remarkable cycling durability of lithium-sulfur batteries with interconnected mesoporous hollow carbon nanospheres as high sulfur content host. Chem Eng J 401:126141. https://doi.org/10.1016/j.cej.2020.126141

    Article  CAS  Google Scholar 

  25. Wutthiprom J, Phattharasupakun N, Sawangphruk M (2018) Designing an interlayer of reduced graphene oxide aerogel and nitrogen-rich graphitic carbon nitride by a layer-by-layer coating for high-performance lithium sulfur batteries. Carbon 139:945–953. https://doi.org/10.1016/j.carbon.2018.08.008

    Article  CAS  Google Scholar 

  26. Yu Z, Wang BL, Liao XB, Zhao KN, Yang ZF, Xia FJ, Sun CL, Wang Z, Fan CY, Zhang JP, Wang YG (2020) Boosting polysulfide redox kinetics by graphene-supported Ni nanoparticles with carbon coating. Adv Energy Mater 10:2000907. https://doi.org/10.1002/aenm.202000907

    Article  CAS  Google Scholar 

  27. Zhang YS, Zhang XL, Silva S, Ding B, Zhang P, Shao GS (2021) Lithium-sulfur batteries meet electrospinning: recent advances and the key parameters for high gravimetric and volume energy density. Adv Sci. https://doi.org/10.1002/advs.202103879

    Article  Google Scholar 

  28. Jiang M, Wang RX, Wang KL, Gao S, Han J, Yan J, Cheng SJ, Jiang K (2019) Hierarchical porous Fe/N doped carbon nanofibers as host materials for high sulfur loading Li-S batteries. Nanoscale 11:15156–15165. https://doi.org/10.1039/c9nr04408f

    Article  CAS  PubMed  Google Scholar 

  29. Cai JJ, Wu C, Zhu Y, Zhang KL, Shen PK (2017) Sulfur impregnated N, P co-doped hierarchical porous carbon as cathode for high performance Li-S batteries. J Power Sources 341:165–174. https://doi.org/10.1016/j.jpowsour.2016.12.008

    Article  CAS  Google Scholar 

  30. Wang ZJ, Xue D, Song HJ, Zhong XL, Wang JB, Hou PF (2019) Hierarchical micro-mesoporous carbon prepared from waste cotton textile for lithium-sulfur batteries. Ionics 25:4057–4066. https://doi.org/10.1007/s11581-019-02968-9

    Article  CAS  Google Scholar 

  31. Lee JS, Jun J, Jang J, Manthiram A (2017) Sulfur-immobilized, activated porous carbon nanotube composite based cathodes for lithium-sulfur batteries. Small 13:1602984. https://doi.org/10.1002/smll.201602984

    Article  CAS  Google Scholar 

  32. Kang WM, Fan LL, Deng NP, Zhao HJ, Li QX, Minoo N, Yan J, Cheng BW (2017) Sulfur-embedded porous carbon nanofiber composites for high stability lithium-sulfur batteries. Chem Eng J 333:185–190. https://doi.org/10.1016/j.cej.2017.09.134

    Article  CAS  Google Scholar 

  33. Zhou J, Chen MX, Wang T, Li SY, Zhang QS, Zhang M, Xu HJ, Liu JL, Liang JF, Zhu J, Duan XF (2020) Covalent selenium embedded in hierarchical carbon nanofibers for ultra-high areal capacity Li-Se batteries. Iscience 23:100919. https://doi.org/10.1016/j.isci.2020.100919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li J, Guo Y, Wen P, Zhu JH, Liu ZG, Qiu YG (2018) Zinc acetate activation-enhanced performance of hollow nano silica/carbon composite nanofibers for lithium-sulfur batteries. J ElectroanalL Chem 823:287–295. https://doi.org/10.1016/j.jelechem.2018.06.023

    Article  CAS  Google Scholar 

  35. Wang NN, Xu ZF, Xu X, Liao T, Tang B, Bai ZC, Dou SX (2018) Synergistically enhanced interfacial interaction to polysulfide via N, O dual-doped highly porous carbon microrods for advanced lithium-sulfur batteries. ACS Appl Mater Inter 10:13573–13580. https://doi.org/10.1021/acsami.8b02084

    Article  CAS  Google Scholar 

  36. Wang HX, Zhang B, Zeng XQ, Yan LJ, Zheng JC, Ling M, Hou Y, Lu YY, Liang CD (2020) 3D porous carbon nanofibers with CeO2-decorated as cathode matrix for high performance lithium-sulfur batteries. J Power Sources 473:228588. https://doi.org/10.1016/j.jpowsour.2020.228588

    Article  CAS  Google Scholar 

  37. Yao SS, He YP, Wang YQ, Bi MZ, Liang YZ, Majeed A, Yang ZL, Shen SQ (2021) Porous N-doped carbon nanofibers assembled with nickel ferrite nanoparticles as efficient chemical anchors and polysulfide conversion catalyst for lithium-sulfur batteries. J Colloid Interf Sci 601:209–219. https://doi.org/10.1016/j.jcis.2021.05.125

    Article  CAS  Google Scholar 

  38. Wang D, Cao Q, Jing B, Wang XY, Huang TL, Zeng P, Jiang SX, Zhang Q, Sun JY (2020) A freestanding metallic tin-modified and nitrogen-doped carbon skeleton as interlayer for lithium-sulfur battery. Chem Eng J 399:125723. https://doi.org/10.1016/j.cej.2020.125723

    Article  CAS  Google Scholar 

  39. Li H, Wen XZ, Shao F, Zhou C, Zhang YF, Hu NT, Wei H (2021) Interface covalent bonding endowing high-sulfur-loading paper cathode with robustness for energy-dense, compact and foldable lithium-sulfur batteries. Chem Eng J 412:128562. https://doi.org/10.1016/j.cej.2021.128562

    Article  CAS  Google Scholar 

  40. Han XR, Guo XT, Xu MJ, Pang H, Ma YW (2020) Clean utilization of palm kernel shell: sustainable and naturally heteroatom-doped porous activated carbon for lithium-sulfur batteries. Rare Met 39:1099–1106. https://doi.org/10.1007/s12598-020-01439-9

    Article  CAS  Google Scholar 

  41. Sun CS, Guo DC, Shao QJ, Chen J (2021) Preparation of gelatin-derived nitrogen-doped large pore volume porous carbons as sulfur hosts for lithium-sulfur batteries. New Carbon Mater 36:198–208. https://doi.org/10.1016/S1872-5805(21)60014-8

    Article  Google Scholar 

  42. Bian ZH, Yuan T, Xu Y, Pang YP, Yao HF, Li J, Yang JH, Zheng SY (2019) Boosting Li-S battery by rational design of freestanding cathode with enriched anchoring and catalytic N-sites carbonaceous host. Carbon 150:216–223. https://doi.org/10.1016/j.carbon.2019.05.022

    Article  CAS  Google Scholar 

  43. Wang Y, Yang L, Chen Y, Li Q, Chen CT, Zhong BH, Guo XD, Wu ZG, Wang GK (2020) Novel bifunctional separator with a self-assembled FeOOH/coated g-C3N4/KB bilayer in lithium-sulfur batteries. ACS Appl Mater Inter 12:57859–57869. https://doi.org/10.1021/acsami.0c16631

    Article  CAS  Google Scholar 

  44. Li JR, Zhou J, Wang T, Chen X, Zhang YX, Wan Q, Zhu J (2020) Covalent sulfur embedding in inherent N, P co-doped biological carbon for ultrastable and high rate lithium-sulfur batteries. Nanoscale 12:8991–8996. https://doi.org/10.1039/d0nr01103g

    Article  CAS  PubMed  Google Scholar 

  45. Wu XY, Li SM, Wang B, Liu JH, Yu M (2020) Free-standing 3D network-like cathode based on biomass-derived N-doped carbon/graphene/g-C3N4 hybrid ultrathin sheets as sulfur host for high-rate Li-S battery. Renew Energ 158:509–519. https://doi.org/10.1016/j.renene.2020.05.098

    Article  CAS  Google Scholar 

  46. Dillard C, Chung S-H, Singh A, Manthiram A, Kalra V (2018) Binder-free, freestanding cathodes fabricated with an ultra-rapid diffusion of sulfur into carbon nanofiber mat for lithium single bond sulfur batteries. Mater Today Energy 9:336–344. https://doi.org/10.1016/j.mtener.2018.06.004

    Article  Google Scholar 

  47. Ho YC, Chung SH (2021) A design of the cathode substrate for high-loading polysulfide cathodes in lean-electrolyte lithium-sulfur cells. Chem Eng J 422:130363. https://doi.org/10.1016/j.cej.2021.130363

    Article  CAS  Google Scholar 

  48. Zhou F, Qiao ZS, Zhang YG, Xu WJ, Zheng HF, Xie QS, Luo Q, Wang LS, Qu BH, Peng DL (2020) Bimetallic MOF-derived CNTs-grafted carbon nanocages as sulfur host for high-performance lithium-sulfur batteries. Electrochim Acta 349:136378. https://doi.org/10.1016/j.electacta.2020.136378

    Article  CAS  Google Scholar 

  49. Xie C, Shan H, Song XX, Chen LP, Wang JJ, Shi JW, Hu JH, Zhang JJ, Li XF (2021) Flexible S@C-CNTs cathodes with robust mechanical strength via blade-coating for lithium-sulfur batteries. J Colloid Interface Sci 592:448–454. https://doi.org/10.1016/j.jcis.2021.02.065

    Article  CAS  PubMed  Google Scholar 

  50. Qiao ZS, Zhang YG, Meng ZH, Xie QS, Lin L, Zheng HF, Sa BS, Lin J, Wang LS, Peng DL (2021) Anchoring polysulfides and accelerating redox reaction enabled by Fe-based compounds in lithium-sulfur batteries. Adv Funct Mater 31:2100970. https://doi.org/10.1002/adfm.202100970

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 42007138) and the Education Department of Hunan Province (Grant Number 20C1916, 21C0135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 539 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Dai, Y., Zhu, W. et al. Construction of porous carbon nanofibers with encapsulated sulfur as free-standing cathode material of lithium-sulfur batteries. Ionics 28, 2155–2162 (2022). https://doi.org/10.1007/s11581-022-04476-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04476-9

Keywords

Navigation