Skip to main content

Advertisement

Log in

The correlation between structure and thermal properties of nickel-rich ternary cathode materials: a review

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Ni-rich ternary cathode materials for Li-ion batteries have the advantages of high reversible capacity, high energy density, improved rate performance and low cost. However, they suffer from problems such as fast capacity decay, poor cycle performance and thermal instability. In this study, we review the structure of Ni-rich ternary cathode materials and analyse their structural defects. Then, we summarise the strategies for improving thermoelectric performance, such as element doping and surface coating, as well as the mechanism of change in the material structure after modification for improving thermal stability. We conclude that the prerequisite for improving the thermal stability of Ni-rich ternary materials is the structural stability, which improves the safety of Li ion batteries. Because experimental analysis is relatively not enough, it is difficult to reflect the process of thermal changes within the battery in real time. Therefore, for Li-ion battery systems, thermo-electrochemical analysis is employed to obtain relevant thermodynamic and electrochemical parameters. The exothermic law is obtained, and the corresponding solutions are proposed to solve the thermal safety problem of batteries with Ni-rich ternary cathodes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lim JM, Hwang T, Kim D, Park MS, Cho K, Cho M (2017) Intrinsic origins of crack generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathode material. Sci.Rep 7:39669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ryu HH, Park KJ, Yoon DR, Aishova A, Yoon CS, Sun YK (2019) Li[Ni0.9Co0.09W0.01]O2: a new type of layered oxide cathode with high cycling stability. Adv. Energy Mater:1902698

  3. Yoon CS, Park KJ, Kim UH, Kang KH, Ryu HH, Sun YK (2017) High-energy Ni-rich Li[NixCoyMn1-x-y]O2 cathodes via compositional partitioning for next-generation electric vehicles. Chem. Mater 29:10436–10445

    Article  CAS  Google Scholar 

  4. Kim JH, Park KJ, Kim SJ, Yoon CS, Sun YK (2019) A method of increasing the energy density of layered Ni-rich Li[Ni1-2xCoxMnx]O2 cathodes (x=0.05, 0.1,0.2). J. Mater. Chem 7:2694–2701

    Article  CAS  Google Scholar 

  5. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4:3243

    Article  CAS  Google Scholar 

  6. Wang R, Dai X, Qian Z, Sun Y, Fan S, Xiong K, Zhang H, In-situ FW (2020) surface protection for enhancing stability and performance of LiNi0.5Mn0.3Co0.2O2 at 4.8V: the working mechanisms. ACS. Mater. Lett. 2:280

    CAS  Google Scholar 

  7. Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1:6013

    Article  CAS  Google Scholar 

  8. Xiao P, Shi T, Huang W, Ceder G (2019) Understanding surface densified phases in Ni-rich layered compounds. ACS Energy Lett. 4:811–818

    Article  CAS  Google Scholar 

  9. Doughty DH, Pesaran AA 2012 in: National Renewable Energy Laboratory

  10. Doughty DH, Roth EP (2012) Electrochem. Soc. Interface 21:37–44

    CAS  Google Scholar 

  11. Liu W, Oh P, Liu X, Lee M-J, Cho W, Chae S, Kim Y, Cho J (2015) Angew. Chem. Int.Ed 54:4440–4457

    Article  CAS  Google Scholar 

  12. Noh H-J, Youn S, Yoon CS, Sun Y-K, Power J (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Sources 233:121–130

    Article  CAS  Google Scholar 

  13. Xiang Y, Jiang Y, Liu S et al (2020) Improved electrochemical performance of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathode materials for lithium ion batteries synthesized by ionic-liquid-assisted hydrothermal method. Frontiers in Chemistry:8

  14. Noh HJ, Youn S, Yoon CS, Sun YK (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2(x=1/3, 0.5, 0.6, 0.7,0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233:121–130

    Article  CAS  Google Scholar 

  15. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J. Power Sources 195(9):2419–2430

    Article  CAS  Google Scholar 

  16. Bai XT, Sun XY, Zhuang WD et al (2014) The mechanism of preparing LiNi0.5Co0.2Mn0.3O2 from hydroxide precursor. Battery 44(5):260–263

    CAS  Google Scholar 

  17. Song LB, Li XY, Xiong ZL et al (2017) Research progress of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries. Journal of Functional Materials 48(12):12023–12029+12035

    CAS  Google Scholar 

  18. Goonetilleke D, Sharma N, Pang WK, Peterson VK, Petibon R, Li J, Dahn JR (2019) Structural evolution and high-voltage structural stability of Li(NixMnyCoz)O2 electrodes. Chemistry of Materials 31(2):376–386

    Article  CAS  Google Scholar 

  19. Huang YP (2019) Preparation and coating of nickel-rich ternary cathode materials for lithium-ion batteries [D]. South China University of Technology

  20. Barboux P, Tarascon JM, Shokoohi FK (1991) The use of acetates as precursors for the low temperature synthesis of LiNiO2 and LiCoO2 intercalation compounds. Journal of Solid State Chemistry 94(1):185–196

    Article  CAS  Google Scholar 

  21. Sheu SP, Shih IC, Yao CY, Chen JM, Hurng WM (1997) Studies of LiNiO2 in lithium-ion batteries. Journal of Power Sources 68:558–560

    Article  CAS  Google Scholar 

  22. Nakai I, Takahashi K, Shiraishi Y, Nakagome T, Nishikawa F (1998) Study of the Jahn-Teller distortion in LiNiO2, a cathode materoal in a rechargeable lithium battery, by in situ X-ray absorption fine structure analysis [J]. Journal of the solid state chemistry 140:145–148

    Article  CAS  Google Scholar 

  23. Schoonman J, Tuller HL, Kelder EM (1999) Defect chemical aspects of lithium-ion battery cathodes. Journal of Power Sources 81:44–48

    Article  Google Scholar 

  24. Broussely M, Biensan P, Simon B (1999) Lithium insertion into host materials: the key to success for Li ion batteries. Electrochimica Acta 45(1-2):3–22

    Article  CAS  Google Scholar 

  25. Liu HS, Zhang ZR, Gong ZL, Yang Y (2004) Origin of deterioration for LiNiO2 cathode material during storage in air. Electrochemical and Solid-State Letters. 7(7):A190–A193

    Article  CAS  Google Scholar 

  26. Sasaki T et al (2009) Capacity-fading mechanism of LiNiO2-based lithium-ion batteries-analysis by electrochemical and spectroscopic examination. Journal of the electrochemical society 156(4):A289–A293

    Article  CAS  Google Scholar 

  27. Muto S, Sasano Y, Tatsumi K, Sasaki T, Horibuchi K, Takeuchi Y, Ukyo Y (2009) Capacity-fading mechanism of LiNiO2-based lithium-ion batteries-diagnostic analysis by electron microscopy and spectroscopy [J]. Journal of the electrochemical society 156(5):A371–A377

    Article  CAS  Google Scholar 

  28. Chen ZL, Zou H, Zhu X, Zou J, Cao J (2011) First-principle investigation of Jahn–Teller distortion and topological analysis of chemical bonds in LiNiO2. Journal of Solid State Chemistry 184:1784–1790

    Article  CAS  Google Scholar 

  29. Li X, Zhang KJ, Wang MS et al (2018) Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2. Sustainable Energy & Fuels. https://doi.org/10.1039/C7SE00513J

  30. Lu ZH, Huang X, Huang H, Chen L, Joop Schoonman (1999) The phase transition and optimal synthesis temperature of LiNiO2. Solid State Ionics 120:103–107

    Article  CAS  Google Scholar 

  31. Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chemistry of materials 22:691–714

    Article  CAS  Google Scholar 

  32. Takahashi Y, Akimoto J, Gotoh Y, Kawaguchi K, Mizuta S (2001) Single crystal growth and structural chemistry of Li1-zNi1+zO2 with z=0.075. Journal of Solid State Chemistry 160:178–183

    Article  CAS  Google Scholar 

  33. Kim Y (2012) First principles investigation of the structure and stability of LiNiO2 doped with Co and Mn. Journal of materials science 47:7558–7563

    Article  CAS  Google Scholar 

  34. Li Y, Feng X, Ren D, Ouyang M, Lu L Varying thermal runaway mechanism caused by fast charging for high energy pouch batteries. ECS Meeting Ab Meeting Abstracts MA2019-01 2019;6:585.stracts MA2019-01 2019;6:585

  35. Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y (1999) Electrochim. Acta 45:67

    CAS  Google Scholar 

  36. Balasubramanian M, Lee HS, Sun X, Q X et al D. A. Fischer, and Z. Fu, Electrochem. Solid-State Lett. 5:A22–A2002

  37. Andersson AM Edstrom K, RaoN, J Power Sources, 81–82, 286 1999

  38. Richard MN. and Dahn JR, et al. J. Power Sources, 83, 71 1999

  39. AYS D, A XL, B XJ, et al. Thermal kinetics on exothermic reactions of a commercial LiCoO 2, 18650 lithium-ion battery and its components used in electric vehicles: A review. Journal of Energy Storage, 30

  40. Liu H, Wei Z, He W et al (2017) Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review. Energy Conversion and Management 150(oct.):304–330

    Article  CAS  Google Scholar 

  41. Xu G, Huang L, Lu C, et al. Revealing the multilevel thermal safety of lithium batteries. Energy Storage Materials, 2020.

  42. Wu MS, Liu KH, Wang YY, Wan CC (2002) Heat dissipation design for lithium-ion batteries. Journal of Power Sources 109(1):160–166

    Article  CAS  Google Scholar 

  43. Sun XX, Wang YC, Wang FC Thermal management technology for series-parallel HEV [C]. Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation, Xi’an, China, 2010: 213-218

  44. Zhao Ruirui Liang et al Understanding the role of Na-doping on Ni-rich layered oxide LiNi0.5Co0.2Mn0.3O2. Journal of Alloys & Compounds An Interdisciplinary Journal of Materials Science & Solid State Chemistry & Physics, 2016

  45. Li H, Zhou PF, Liu FM, Li HX, Cheng FY, Chen J (2019) Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries. Chem. Sci. 10:1374–1379

    Article  CAS  PubMed  Google Scholar 

  46. Kim UH, Kuo LY, Kaghazchi P, Yoon CS, Sun YK (2019) Quaternary Layered Ni-Rich NCMA Cathode for Lithium-Ion Batteries. ACS Energy 4:576–582

    Article  CAS  Google Scholar 

  47. Energy storage and thermostability of Li3VO4-Coated LiNi0.8Co0.1Mn0.1O2 as cathode materials for lithium-ion batteries. Frontiers in chemistry, 2018

  48. Xiao Z, Hu C, Song L et al (2017) Modification research of LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 as a cathode material for lithium-ion battery. Ionics 24(3):1–8

    CAS  Google Scholar 

  49. Song Liubin, Liu et al Thermoeletrochemical study on LiNi0.8Co0.1Mn0.1O2 with in situ modification of Li2ZrO3. Ionics, 2018

  50. Chen Z, Kim GT, Guang Y, Bresser D, Diemant T, Huang Y, Copley M, Behm RJ, Passerini S, Shen Z (2018) Manganese phosphate coated Li[Ni0.6Co0.2Mn0.2]O2 cathode material: Towards superior cycling stability at elevated temperature and high voltage. J. Power Sources 402:263–271

    Article  CAS  Google Scholar 

  51. Yang Y, Yu G, Cha J, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y (2011) Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating. ACS Nano 5:9187–9193

    Article  CAS  PubMed  Google Scholar 

  52. Wang GX, Yang L, Chen Y, Wang JZ, Bewlay S, Liu HK (2005) An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochim. Acta 50:4649–4654

    Article  CAS  Google Scholar 

  53. Wu YS, Pham QT, Yang CC et al (2020) Study of electrochemical performance and thermal property of LiNi0.5Co0.2Mn0.3O2 cathode materials coated with a novel oligomer additive for high-safety lithium-ion batteries. Chemical Engineering Journal:126727

  54. Wang Y, Ma L, Xi X, Nie Z, Zhang Y, Wen X, Lyu Z (2019) Regeneration and characterization of LiNi0.8Co0.15Al0.05O2 cathode material from spent power lithium-ion batteries. Waste Manag 95:192–200

    Article  CAS  PubMed  Google Scholar 

  55. Zhuang W, Ban L, Bai X (2020) Research progress on coating and doping modification of nickel rich ternary cathode materials. Journal of Inorganic Materials

  56. Lu CH, L WC. (2000) Reaction mechanism and kinetics analysis of lithium nickel oxide during solid-state reaction. Journal of Materials Chemistry 10(6):1403–1407

    Article  CAS  Google Scholar 

  57. A X L, A S W, A L W, et al Stabilizing the high-voltage cycle performance of LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode material by Mg doping. Journal of Power Sources, 438

  58. Trease NM, Seymour ID, Radin MD et al (2016) Identifying the distribution of Al3+in LiNi0.8Co0.15Al0.05O2. Chem. Mater 28:8170–8180

    Article  CAS  Google Scholar 

  59. Aurbach D, Srur-Lavi O, Ghanty C et al (2015) Studies of aluminum-doped LiNi0.5Co0.2Mn0.3O2: electrochemical behavior, aging, structural transformations, and thermal characteristics. J. Electrochem. Soc 162:A1014–A1027

    Article  CAS  Google Scholar 

  60. Woo SW, Myung ST, Bang H et al (2009) Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochim. Acta 54:3851–3856

    Article  CAS  Google Scholar 

  61. A. Van der Ven G. Ceder, Electrochem. Commun., 2004, 6,1045

  62. Dianat A, Seriani N, Bobeth M, Cuniberti G (2013) Effects of Al-doping on the properties of Li-Mn-Ni-O cathode materials for Li-ion batteries: an ab initio study. J. Mater. Chem. 1:9273–9280

    Article  CAS  Google Scholar 

  63. Hinuma Y, Meng YS, Kang K G. Ceder Chem. Mater.,2007, 19, 1790

  64. Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ (2011) Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution. Chem. Mater. 23:3614–3621

    Article  CAS  Google Scholar 

  65. Wu P, Zeng XL, Zhou C, Gu GF, Tong DG Improved electrochemical performance of LiNi0.5-xRhxMn1.5O4 cathode materials for 5 V lithium ion batteries via Rh-doping, Mater. Chem. Phys 138:2013, 716

  66. M HU, X PANG, Z ZHOU (2013) Recent progress in high-voltage lithium ion batteries. Journal of Power Sources 237(3):229–242

    Google Scholar 

  67. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources 195(4):939–954

    Article  CAS  Google Scholar 

  68. Chen J (2013) Recent progress in advanced materials for lithium ion batteries. Materials 6(1):156–183

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vu DL, Lee JW (2016) Properties of LiNi0.8C0.1Mn0.1O2as a high energy cathode material for lithium-ion batteries. Korean Journal of Chemical Engineering 33(2):514–526

    Article  CAS  Google Scholar 

  70. DING Y, Mu D, Wu B et al (2017) Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles. Applied Energy 195:586–599

    Article  CAS  Google Scholar 

  71. nai-xin Y, Xiong-wen Z, Guo-jun LI (2014) Study of heat generation of a lithium-ion battery during discharge cycle. Journal of Engineering Thermophyscis 9:1850–1854

    Google Scholar 

  72. Su Y, Li L, Chen G et al Strategies of removing residual lithium compounds on the surface of Ni-rich cathode materials. Chinese Journal of Chemistry.

  73. Wu F, Li Q, Chen L, Lu Y, Su Y, Bao L, Chen R, Chen S (2019) Use of Ce to reinforce the interface of Ni-Rich LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries under high operating voltage. ChemSusChem 12:935–943

    Article  CAS  PubMed  Google Scholar 

  74. Wang S, Li Y, Wu J, Zheng B, McDonald MJ, Yang Y (2015) Toward a stabilized lattice framework and surface structure of layered lithium-rich cathode materials with Ti modification. Phys. Chem. Chem. Phys. 17:10151–10159

    Article  CAS  PubMed  Google Scholar 

  75. Liu HS, Zhang ZR, Gong ZL, Yang Y (2004) Origin of deterioration for LiNiO2 cathode material during storage in air. Electrochem Solid-State Lett. 7:A190–A193

    Article  CAS  Google Scholar 

  76. Iqbal A, Li D (2019) Systematic study of the effect of calcination temperature and Li/M molar ratio on high performance Ni-rich layered LiNi0.9Co0.1O2 cathode materials. Chem. Phys. Lett 720:97–106

    Article  CAS  Google Scholar 

  77. Shukla AK, Prem KUMART (2008) Materials for next-generation lithium batteries. Current Science 94(3):314–331

    CAS  Google Scholar 

  78. David L, Mohanty D, Geng L, Ruther RE, Sefat AS, Cakmak E, Veith GM, Meyer HM, Wang H, Wood DL (2019) High-voltage performance of Ni-Rich NCA cathodes: linking operating voltage with cathode degradation. ChemElectroChem. 6:5571–5580

    Article  CAS  Google Scholar 

  79. Wang H, Yang J-p, Wang L, Jian-jun LI, Xiang-ming HE, Ming-gao OUYANG (2012) Safety problem of lithium ion battery. Advanced Materials Industry 9:88–94

    Google Scholar 

  80. Wu K, Yao Z, Yu-qun Z, Jun Y (2011) Safety performance of lithium-ion battery. Process in chemistry 23(2/3):401

    CAS  Google Scholar 

  81. Jia liang Zhang, et al Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries. Journal of Cleaner Production, 2018

  82. Yan W, Yang S, Huang Y et al (2019) A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries. Journal of Alloys and Compounds 819:153048

    Article  CAS  Google Scholar 

  83. Manthiram A, Song B, Li W (2017) A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Mater. 6:125–139

    Article  Google Scholar 

  84. Chen Z, Qin Y, Amine K, Sun YK (2010) Role of surface coating on cathode materials for lithium-ion batteries. J. Mater. Chem. 20:7606–7612

    Article  CAS  Google Scholar 

  85. Myung ST, Amine K, Sun YK (2010) Surface modification of cathode materials from nano-to microscale for rechargeable lithium-ion batteries. J. Mater.Chem. 20:7074–7095

    Article  CAS  Google Scholar 

  86. Tan KS, Reddy MV, Rao GS, Chowdari BVR (2005) Effect of AlPO4-coating on cathodic behaviour of Li(Ni0.8Co0.2)O2. J. Power Sources 141:129–142

    Article  CAS  Google Scholar 

  87. Cho J, Kim TG, Kim C, Lee JG, Kim YW, Park B (2005) Comparison of Al2O3-and AlPO4-coated LiCoO2cathode materials for a Li-ion cell. J. Power Sources 146:58–64

    Article  CAS  Google Scholar 

  88. Cho J, Kim H, Park B (2004) Comparison of overcharge behavior of AlPO4-coated LiCoO2and LiNi0.8Co0.1Mn0.1O2 cathode materials in Li-ion cells. J. Electrochem. Soc 151:A1707–A1711

    Article  CAS  Google Scholar 

  89. Lee SH, Koo BK, Kim JC, Kim KM (2008) Effect of Co3(PO4)2coating on Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for lithium rechargeable batteries. J. Power Sources 184:276–283

    Article  CAS  Google Scholar 

  90. Liu X, Li H, Ishida M, Zhou H (2013) PEDOT modified LiNi1/3Co1/3Mn1/3O2with enhanced electrochemical performance for lithium ion batteries. J. PowerSources 243:374–380

    CAS  Google Scholar 

  91. A PG, A LZ, B ZY et al (2020) Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. Journal of Energy Chemistry 43:220–235

    Article  Google Scholar 

  92. Zhang JC, Zhang H, Gao R, Li ZY, Hu ZB et al (2016) New insights into the modification mechanism of Li-rich Li1.2Mn0.6Ni0.2O2coated by Li2ZrO3. PCCP 18(19):13322–13331

    Article  CAS  PubMed  Google Scholar 

  93. Li QY, Zhou D, Zhang LJ, Ning D,Chen ZH, A d v . F u n c t . M a t e r . 2 9 ( 1 0 ) ( 2 0 1 9 )

  94. Zhang JC, Li ZY, Gao R, Hu ZB, Liu XF (2015) High Rate Capability and Excellent Thermal Stability of Li+-Conductive Li2ZrO3-Coated LiNi1/3Co1/3Mn1/3O2via a Synchronous Lithiation Strategy. J. Phys. Chem. C 119(35):20350–20356

    Article  CAS  Google Scholar 

  95. Wu F, Zhang XX, Zhao TL, Li L, Xie M et al (2015) ACS Appl. Mater. Interfaces 7(6):3773–3781

    Article  CAS  Google Scholar 

  96. Nishizawa M, Mukai K, Kuwabata S, Martin CR, Yoneyama H (1997) Template Synthesis of Polypyrrole‐Coated Spinel LiMn2 O 4 Nanotubules and Their Properties as Cathode Active Materials for Lithium Batteries. J. Electrochem. Soc. 144:1923–1927

    Article  CAS  Google Scholar 

  97. Cai Y, Huang D, Ma Z, Wang H, Wu X, Li Q (2019) Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate. Electrochimica, Acta 305:563–570

    Article  CAS  Google Scholar 

  98. Song L, Tang F, Xiao Z, Cao Z, Zhu H, Li A (2018) Enhanced electrochemical properties of polyaniline-coated LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Journal of Electronic Materials 47(10):5896–5904

    Article  CAS  Google Scholar 

  99. Yim T, Jang SH, Han YK Triphenyl borate as a bi-functional additive to improve surface stability of Ni-rich cathode material. J. Power Sources 372:24–30

  100. Jiang L, Wang Q, Sun J (2018) Electrochemical performance and thermal stability analysis of LiNixCoyMnzO2 cathode based on a composite safety electrolyte. Journal of Hazardous Materials 351(JUN.5):260–269

    Article  CAS  PubMed  Google Scholar 

  101. Song X, Liu G, Yue H et al (2020) A novel low-cobalt long-life LiNi0.88Co0.06Mn0.03Al0.03O2 cathode material for lithium ion batteries. Chemical Engineering Journal 126301

  102. Song L, Li X, Xiao Z et al (2019) Thermo-electrochemical study of co-modified Li2O-2B2O3-(LiNi0.5Co0.2Mn0.3)0.98Zr0.02O2 cathode material. Ionics 26(10)

  103. Jiang Y, Liu Z, Zhang Y et al (2019) Full-gradient structured LiNi0.8Co0.1Mn0.1O2 cathode material with improved rate and cycle performance for lithium ion batteries. Electrochimica Acta

  104. Wang Q, Zhao X (2016) Jiana Ye, et al. Thermal response of lithium-ion battery during charging and discharging under adiabatic conditions. Journal of Thermal Analysis and Calorimetry 124(1):417–428

    Article  CAS  Google Scholar 

  105. Maleki H (1999) Thermal stability studies of Li-ion cells and components. Journal of The Electrochemical Society 146(9)

  106. Wang Q, Jiang B, Li B, Yan Y (2016) A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renewable and Sustainable Energy Reviews 64:106–128

    Article  Google Scholar 

  107. Pesaran AA (2001) Battery thermal management in EV and HEVs: issues and solutions. Battery Man 43(5):34–49

    Google Scholar 

  108. Funahashi A, Kida Y, Yanagida K et al Thermal simulation of large-scale lithium secondary batteries using a graphite-coke

  109. LIU Y, TANG S, LI L, et al. (2020) Simulation and parameter identification based on electrochemical-thermal coupling model of power lithium ion-battery. Journal of Alloys and Compounds 844:156003

    Article  CAS  Google Scholar 

  110. JIANG G, ZHUANG L, HU Q, et al. (2020) An investigation of heat transfer and capacity fade in a prismatic Li-ion battery based on an electrochemical-thermal coupling model. Applied Thermal Engineering 171:115080

    Article  CAS  Google Scholar 

  111. TANG Y, WU L, WEI W, et al. (2018) Study of the thermal properties during the cyclic process of lithium ion power batteries using the electrochemical-thermal coupling model. Applied Thermal Engineering 137:11–22

    Article  CAS  Google Scholar 

  112. B ZAA, B KS, A LJ et al Modeling and analysis of thermal runaway in Li-ion cell. Applied Thermal Engineering, 160

  113. Sara A, Martin P, Amandine L et al (2018) Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries. Journal of Power Sources 399:264–273

    Article  CAS  Google Scholar 

  114. Feng, Xuning, Languang, et al. A 3D thermal runaway propagation model for a large format lithium ion battery module. Energy, 2016

  115. Li H, Liu C, Kong X et al. Prediction of the heavy charging current effect on nickel-rich/silicon-graphite power batteries based on adiabatic rate calorimetry measurement. Journal of Power Sources, 438

  116. Pan D, Guo H, Tang S et al. Evaluating the accuracy of electro-thermal coupling model in lithium-ion battery via altering internal resistance acquisition methods. Journal of Power Sources, 463

  117. Chen M, Bai F, Lin S et al (2018) Performance and safety protection of internal short circuit in lithium-ion battery based on a multilayer electro-thermal coupling model. Applied Thermal Engineering 146

  118. Li J, Sun D, Jin X, Shi W, Sun C (2019) Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation. Applied Energy 254:113574

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liubin Song.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Liu, P., Song, L. et al. The correlation between structure and thermal properties of nickel-rich ternary cathode materials: a review. Ionics 27, 3207–3217 (2021). https://doi.org/10.1007/s11581-021-04103-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04103-z

Keywords

Navigation