Skip to main content
Log in

Insights into manganese and nickel co-doped Li2FeSiO4 cathodes for lithium-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Few studies on two-cations co-doped orthosilicate cathodes have been reported to date. Here, Mn and Ni co-doped Li2Fe0.8-xMn0.2NixSiO4 (x = 0.05 and 0.1) were synthesized using a solid state route. Both Mn and Ni can successfully enter into the Li2FeSiO4 lattice. The X-ray photoelectron spectroscopy (XPS) results show some certain evidence about the participation of foreign Mn and Ni in the charge-discharge reaction. Furthermore, at the conduction band minimum, Ni 3d-orbital contribution can reduce the band gap to 1.13 eV. These improvements can promote the Li+ insertion/de-insertion behavior in the co-doped material; consequently, when x = 0.1, Li2Fe0.7Mn0.2Ni0.1SiO4 shows the initial discharge capacities of 164 mAh g−1 and the corresponding Coulombic efficiency of 87.2%. Even at a rate of 80 mA g−1, the first discharge capacity can reach to 71.2 mAh g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ni J, Jiang Y, Bi X, Li L, Lu J (2017) Lithium iron orthosilicate cathode: progress and perspectives. ACS Energy Lett 2:1771–1781

    Article  CAS  Google Scholar 

  2. Fujita Y, Iwase H, Shida K, Liao J, Fukui T, Matsuda M (2017) Synthesis of high-performance Li2FeSiO4/C composite powder by spray-freezing/freeze-drying a solution with two carbon sources. J Power Sources 361:115–121

    Article  CAS  Google Scholar 

  3. Yang J, Kang X, He D, Zheng A, Pan M, Mu S (2015) Graphene activated 3D hierarchical flower like Li2FeSiO4 for high performance lithium ion batteries. J Mater Chem A 3:16567–16573

    Article  CAS  Google Scholar 

  4. Wei H, Lu X, Chiu HC, Wei B, Gauvin R, Arthur Z, Emond V, Jiang DT, Zaghib K, Demopoulos GP (2018) Ethylenediamine-enabled sustainable synthesis of mesoporous nanostructured Li2FeIISiO4 particles from Fe(III) aqueous solution for Li-ion battery application. ACS Sustain Chem Eng 6:7458–7467

    Article  CAS  Google Scholar 

  5. Zhang Q, Yan C, Meng Y, Wang X (2018) Hierarchical mesoporous Li2FeSiO4/C sheaf-rods as a high-performance lithium-ion battery cathode. J Alloys Compd 767:195–203

    Article  CAS  Google Scholar 

  6. Zhang Q, Yan C, Guo J, Wang X (2018) Mesoporous Li2FeSiO4/C nanocomposites with enhanced performance synthesized from fumed nano silica. Ionics 24:2555–2563

    Article  CAS  Google Scholar 

  7. Qiu H, Jin D, Wang C, Chen G, Wang L, Yue H, Zhang D (2020) Design of Li2FeSiO4 cathode material for enhanced lithium-ion storage performance. Chem Eng J 379:122329

    Article  CAS  Google Scholar 

  8. Dhanalakshmi R, Diwakar K, Rajkumar P, Subadevi R, Liu WR, Sivakumar M (2017) Structural and morphological studies on Li2Fe0.5Mn0.5SiO4/C composite synthesized using polyvinyl alcohol for energy storage devices. J Nanosci Nanotechnol 17:1–5

    Article  Google Scholar 

  9. Qu L, Luo D, Fang S, Liu Y, Yang L, Hirano S, Yang CC (2016) Mg-doped Li2FeSiO4/C as high-performance cathode material for lithium-ion battery. J Power Sources 307:69–76

    Article  CAS  Google Scholar 

  10. Qu L, Li M, Bian L, Du Q, Luo M, Yang B, Yang L, Fang S, Liu Y (2017) A strontium-doped Li2FeSiO4/C cathode with enhanced performance for the lithium-ion battery. J Solid State Electrochem 21:3659–3673

    Article  CAS  Google Scholar 

  11. Qiu H, Yue H, Wang X, Zhang T, Zhang M, Fang Z, Zhao X, Chen G, Wei Y, Wang C, Zhang D (2017) Titanium-doped Li2FeSiO4/C composite as the cathode material for lithium-ion batteries with excellent rate capability and long cycle life. J Alloys Compd 725:860–868

    Article  CAS  Google Scholar 

  12. Qiu H, Yue H, Zhang T, Ju Y, Zhang Y, Guo Z, Wang C, Chen G, Wei Y, Zhang D (2016) Enhanced electrochemical performance of Li2FeSiO4/C positive electrodes for lithium-ion batteries via yttrium doping. Electrochim Acta 188:636–644

    Article  CAS  Google Scholar 

  13. Li LM, Guo HJ, Li XH, Wang ZX, Peng WJ, Xiang KX, Cao X (2009) Effects of roasting temperature and modification on properties of Li2FeSiO4/C cathode. J Power Sources 189:45–50

    Article  CAS  Google Scholar 

  14. Ge YC, Yan XD, Liu J, Zhang XF, Wang JW, He XG, Wang RS, Xie HM (2010) An optimized Ni doped LiFePO4/C nanocomposite with excellent rate performance. Electrochim Acta 55:5886–5890

    Article  CAS  Google Scholar 

  15. Zhang WK, Hu Y, Tao XY, Huang H, Gan YP, Wang CT (2010) Synthesis of spherical LiFePO4/C via Ni doping. J Phys Chem Solids 71:1196–1200

    Article  CAS  Google Scholar 

  16. Shu HB, Wang XY, Wu Q, Hu BA, Yang XK, Wei QL, Liang QQ, Bai YS, Zhou M, Wu C, Chen MF, Wang AW, Jiang LL (2013) Improved electrochemical performance of LiFePO4/C cathode via Ni and Mn co-doping for lithium-ion batteries. J Power Sources 237:149–155

    Article  CAS  Google Scholar 

  17. Li E, Han C, Mi L, Zhu L, Dou YK, Shi (2019) The effect of Ni or Pb substitution on the electrochemical performance of Li2FeSiO4/C cathode materials. Solid State Ionics 330:24–32

    Article  CAS  Google Scholar 

  18. Gao K (2014) Effect of Mn doping on electrochemical properties of Li2FeSiO4/C cathode materials based on a vacuum solid-state method. Ionics. 20:809–815

    Article  CAS  Google Scholar 

  19. Arroyo-de Dompabloa ME, Armand M, Tarascon JM, Amador U (2006) On-demand design of polyoxianionic cathode materials based on electronegativity correlations: an exploration of the Li2MSiO4 system (M = Fe, Mn, co, Ni). Electrochem Commun 8:1292–1298

    Article  Google Scholar 

  20. Wu XZ, Jiang X, Huo QS, Zhang YX (2012) Facile synthesis of Li2FeSiO4/C composites with triblock copolymer P123 and their application as cathode materials for lithium ion batteries. Electrochim Acta 80:50–55

    Article  CAS  Google Scholar 

  21. Lv DP, Bai JY, Zhang P, Wu SQ, Li YX, Wen W, Jiang Z, Mi JX, Zhu ZZ, Yang Y (2013) Understanding the high capacity of Li2FeSiO4: in-situ XRD/XANES study combined with first-principles calculations. Chem Mater 25:2014–2020

    Article  CAS  Google Scholar 

  22. Peng G, Zhang LL, Yang XL, Duan S, Liang G, Huang YH (2013) Enhanced electrochemical performance of multi-walled carbonnanotubes modified Li2FeSiO4/C cathode material for lithium-ionbatteries. J Alloys Compd 570:1–6

    Article  CAS  Google Scholar 

  23. Liu SK, Xu J, Li DZ, Hu Y, Liu X, Xie K (2013) High capacity Li2MnSiO4/C nanocomposite prepared by sol-gelmethod for lithium-ion batteries. J Power Sources 232:258–263

    Article  CAS  Google Scholar 

  24. Wang F, Wang YM, Sun DM, Wang L, Yang J, Jia HP (2014) Highperformance Li2MnSiO4 prepared in molten KCl-NaCl for rechargeable lithium ion batteries. Electrochim Acta 119:131–137

    Article  CAS  Google Scholar 

  25. Chen R, Heinzmann R, Mangold S, Kiran Chakravadhanula VS, Hahn H, Indris S (117, 2013) Structural evolution of Li2Fe1-yMnySiO4 (y = 0, 0.2, 0.5, 1) cathode materials for Li-ion batteries upon electrochemical cycling. J Phys Chem C:884–893

  26. Zhang LL, Duan S, Yang XL, Liang G, Huang YH, Cao XZ, Yang J, Li M, Croft MC, Lewis C (2015) Insight into cobalt-doping in Li2FeSiO4 cathode material for lithium-ion battery. J Power Sources 274:194–202

    Article  CAS  Google Scholar 

  27. Rangappa D, Murukanahally KD, Tomai T, Unemoto A, Honma I (2012) Ultrathin Nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett 12:1146–1151

    Article  CAS  Google Scholar 

  28. Deng H, Zhao SX, Wu X, Wei L, Deng YF, Nan CW (2016) Effect of Ni substitution on structural stability, micromorphology, and electrochemical performance of Li2MnSiO4/C cathode materials. RSC Adv 6:111539–111548

    Article  CAS  Google Scholar 

  29. Chen L, Li D, Zheng X, Chen L, Zhang Y, Liang Z, Feng J, Si P, Lou J, Ci L (2019) Integrated nanocomposite of LiMn2O4/graphene/carbon nanotubes with pseudocapacitive properties as superior cathode for aqueous hybrid capacitors. J Electroanal Chem 842:74–81

    Article  CAS  Google Scholar 

  30. Yang JL, Zheng JX, Kang XC, Teng GF, Hu L, Tan R, Wang K, Song XH, Xu M, Mu SC, Pan F (2016) Tuning structural stability and lithium-storage properties by d-orbital hybridization substitution in full tetrahedron Li2FeSiO4 nanocrystal. Nano Energy 20:117–125

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of Shanxi Province (No. 201801D121046), Natural Science Foundation of Heilongjiang Province (No. LH2020B004), and Scientific Research Foundation for Youths of Harbin University (HUDF2019202, HUDF2019203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Gao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SD., Gao, K. Insights into manganese and nickel co-doped Li2FeSiO4 cathodes for lithium-ion battery. Ionics 27, 2345–2352 (2021). https://doi.org/10.1007/s11581-021-04002-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04002-3

Keywords

Navigation