Skip to main content

Advertisement

Log in

Polydopamine coated poly(m-phenylene isophthalamid) membrane as heat-tolerant separator for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Poly(m-phenylene isophthalamide) (PMIA) membranes are promising heat-tolerant separator candidates of lithium-ion batteries (LIBs), while their wettability toward carbonate electrolyte and corresponding batteries performance are not desirable. Herein, PMIA membranes coated with ultrathin mussel-inspired polydopamine (PDA) layer were fabricated as separators in LIBs. The introduced amino, quinonyl, and catechol groups in PDA coating could enhance the wettability of the resultant PMIA-PDA separator toward electrolyte. The PMIA-PDA separator had excellent thermal stability, showing a thermal shrinkage of 5.2% at 200 °C. The contact angle of the thermal-treated PMIA-PDA separator could maintain at 26.1°, which decreased by 42.7% compared with the pristine PMIA separator. The PMIA-PDA separator also displayed a high ionic conductivity (0.86 mS cm−1) and a low interfacial electric resistance (62.4 Ω). Consequently, the assembled LiCoO2/PMIA-PDA/Li battery achieved good cyclic stability with the capacity retention of 84.3% (121.1 mAh g−1) after 100 cycles under 30 °C. More significantly, the relevant capacity retention remained at 89.0% (127.5 mAh g−1) under 60 °C, which implied a great potential of PMIA-PDA membranes as separators of high-safety LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367. https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  2. Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295. https://doi.org/10.1039/C1EE01388B

    Article  CAS  Google Scholar 

  3. Zubi G, Dufo-López R, Carvalho M, Pasaoglu G (2018) The lithium-ion battery: state of the art and future perspectives. Renew Sust Energ Rev 89:292–308. https://doi.org/10.1016/j.rser.2018.03.002

    Article  Google Scholar 

  4. Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7(12):3857–3886. https://doi.org/10.1039/c4ee01432d

    Article  CAS  Google Scholar 

  5. Guan H-Y, Lian F, Ren Y, Wen Y, Pan X-R, Sun J-L (2013) Comparative study of different membranes as separators for rechargeable lithium-ion batteries. Int J Miner Metall Mater 20(6):598–603. https://doi.org/10.1007/s12613-013-0772-x

    Article  CAS  Google Scholar 

  6. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164(1):351–364. https://doi.org/10.1016/j.jpowsour.2006.10.065

    Article  CAS  Google Scholar 

  7. Xiang Y, Li J, Lei J, Liu D, Xie Z, Qu D, Li K, Deng T, Tang H (2016) Advanced separators for lithium-ion and lithium–sulfur batteries: a review of recent progress. ChemSusChem 9(21):3023–3039. https://doi.org/10.1002/cssc.201600943

    Article  CAS  PubMed  Google Scholar 

  8. Jeong H-S, Hong SC, Lee S-Y (2010) Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. J Membr Sci 364(1–2):177–182. https://doi.org/10.1016/j.memsci.2010.08.012

    Article  CAS  Google Scholar 

  9. Song J, Ryou MH, Son B, Lee J-N, Lee DJ, Lee YM, Choi JW, Park J-K (2012) Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries. Electrochim Acta 85:524–530. https://doi.org/10.1016/j.electacta.2012.06.078

    Article  CAS  Google Scholar 

  10. Zhai Y, Wang N, Mao X, Si Y, Yu J, Al-Deyab SS, El-Newehy M, Ding B (2014) Sandwich-structured PVdF/PMIA/PVdF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries. J Mater Chem A 2(35):14511–14518. https://doi.org/10.1039/c4ta02151g

    Article  CAS  Google Scholar 

  11. Lu C, Qi W, Li L, Xu J, Chen P, Xu R, Han L, Yu Q (2013) Electrochemical performance and thermal property of electrospun PPESK/PVDF/PPESK composite separator for lithium-ion battery. J Appl Electrochem 43(7):711–720. https://doi.org/10.1007/s10800-013-0561-2

    Article  CAS  Google Scholar 

  12. Lin D, Zhuo D, Liu Y, Cui Y (2016) All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J Am Chem Soc 138(34):11044–11050. https://doi.org/10.1021/jacs.6b06324

    Article  CAS  PubMed  Google Scholar 

  13. Oh HJ, Pant HR, Kang YS, Jeon KS, Pant B, Kim CS, Kim HY (2012) Synthesis and characterization of spider-web-like electrospun mats of meta-aramid. Polym Int 61(11):1675–1682. https://doi.org/10.1002/pi.4260

    Article  CAS  Google Scholar 

  14. Jeon KS, Nirmala R, Navamathavan R, Kim KJ, Chae SH, Kim TW, Kim HY, Park SJ (2014) The study of efficiency of Al2O3 drop coated electrospun meta-aramid nanofibers as separating membrane in lithium-ion secondary batteries. Mater Lett 132:384–388. https://doi.org/10.1016/j.matlet.2014.06.117

    Article  CAS  Google Scholar 

  15. Zhang H, Zhang Y, Xu T, John AE, Li Y, Li W, Zhu B (2016) Poly(m-phenylene isophthalamide) separator for improving the heat resistance and power density of lithium-ion batteries. J Power Sources 329:8–16. https://doi.org/10.1016/j.jpowsour.2016.08.036

    Article  CAS  Google Scholar 

  16. Li W, Li X, Xie X, Yuan A, Xia B (2016) Effect of drying temperature on a thin PVDF-HFP/PET composite nonwoven separator for lithium-ion batteries. Ionics 23(4):929–935. https://doi.org/10.1007/s11581-016-1891-y

    Article  CAS  Google Scholar 

  17. Cui JQ, Liu JQ, He CF, Li J, Wu XF (2017) Composite of polyvinylidene fluoride-cellulose acetate with Al(OH)3 as a separator for high-performance lithium ion battery. J Membr Sci 541:661–667. https://doi.org/10.1016/j.memsci.2017.07.048

    Article  CAS  Google Scholar 

  18. Liu JQ, Wu XF, He JY, Li J, Lai YQ (2017) Preparation and performance of a novel gel polymer electrolyte based on poly( vinylidene fluoride)/graphene separator for lithium ion battery. Electrochim Acta 235:500–507. https://doi.org/10.1016/j.electacta.2017.02.042

    Article  CAS  Google Scholar 

  19. He CF, Liu JQ, Li J, Zhu FF, Zhao HJ (2018) Blending based polyacrylonitrile/poly(vinyl alcohol) membrane for rechargeable lithium ion batteries. J Membr Sci 560:30–37. https://doi.org/10.1016/j.memsci.2018.05.013

    Article  CAS  Google Scholar 

  20. Liu JQ, Liu M, He CF, Li J, Li QH, Wang C, Xi Y (2019) Blending-based poly(vinylidene fluoride)/polymethyl methacrylate membrane for rechargeable lithium-ion batteries. Ionics 25(11):5201–5211. https://doi.org/10.1007/s11581-019-03060-y

    Article  CAS  Google Scholar 

  21. Li H, Chao CY, Han PL, Yan XR, Zhang HH (2017) Preparation and properties of gel-filled PVDF separators for lithium ion cells. J Appl Polym Sci 134(7). https://doi.org/10.1002/app.44473

  22. Nunes-Pereira J, Costa CM, Lanceros-Mendez S (2015) Polymer composites and blends for battery separators: state of the art, challenges and future trends. J Power Sources 281:378–398. https://doi.org/10.1016/j.jpowsour.2015.02.010

    Article  CAS  Google Scholar 

  23. Zhao P, Yang J, Shang Y, Wang L, Fang M, Wang J, He X (2015) Surface modification of polyolefin separators for lithium ion batteries to reduce thermal shrinkage without thickness increase. J Energy Chem 24(2):138–144. https://doi.org/10.1016/s2095-4956(15)60294-7

    Article  Google Scholar 

  24. Kim SW, Cho KY (2016) Enhanced moisture repulsion of ceramic-coated separators from aqueous composite coating solution for lithium-ion batteries inspired by a plant leaf surface. J Mater Chem A 4(14):5069–5074. https://doi.org/10.1039/c6ta01125j

    Article  CAS  Google Scholar 

  25. Ryou MH, Lee DJ, Lee JN, Lee YM, Park J-K, Choi JW (2012) Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv Energy Mater 2(6):645–650. https://doi.org/10.1002/aenm.201100687

    Article  CAS  Google Scholar 

  26. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430. https://doi.org/10.1126/science.1147241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hong S, Na YS, Choi S, Song IT, Kim WY, Lee H (2012) Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv Funct Mater 22(22):4711–4717. https://doi.org/10.1002/adfm.201201156

    Article  CAS  Google Scholar 

  28. Ryou M-H, Lee YM, Park J-K, Choi JW (2011) Mussel-inspired Polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv mater 23 (27):3066−3070. https://doi.org/10.1002/adma.201100303

  29. Cao C, Tan L, Liu W, Ma J, Li L (2014) Polydopamine coated electrospun poly(vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries. J Power Sources 248:224–229. https://doi.org/10.1016/j.jpowsour.2013.09.027

    Article  CAS  Google Scholar 

  30. Zhang JJ, Zh L, Kong QS, Zhang CJ, Pang SP, Yue L, Wang X, Yao J, Cui G (2013) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces 5(1):128–134. https://doi.org/10.1021/am302290n

    Article  CAS  PubMed  Google Scholar 

  31. Shi C, Dai J, Huang S, Li C, Shen X, Zhang P, Wu D, Sun D, Zhao J (2016) A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium ion batteries. J Membr Sci 518:168–177. https://doi.org/10.1016/j.memsci.2016.06.046

    Article  CAS  Google Scholar 

  32. Ouyang SS, Wang T, Zhong LG, Peng ML, Yao J, Wang S (2018) Fabrication of hierarchical feather-mimetic polymer nanofibres. Appl Surf Sci 427:471–479. https://doi.org/10.1016/j.apsusc.2017.08.179

    Article  CAS  Google Scholar 

  33. Wang Z, Li T, Yu J, Hu Z, Zhu J, Wang Y (2019) General bioinspired, innovative method for fabrication of surface-nickeled meta-aramid fibers. Ind Eng Chem Res 58(22):9458–9464. https://doi.org/10.1021/acs.iecr.9b01903

    Article  CAS  Google Scholar 

  34. Qu H, Ju J, Chen B, Xue N, Du H, Han X, Zhang J, Xu G, Yu Z, Wang X, Cui G (2018) Inorganic separators enable significantly suppressed polysulfide shuttling in high-performance lithium–sulfur batteries. J Mater Chem A 6(46):23720–23729. https://doi.org/10.1039/c8ta07823h

    Article  CAS  Google Scholar 

  35. Zhao HJ, Deng NP, Yan J, Kang WM, Ju J, Wang L, Li Z, Cheng B (2019) Effect of OctaphenylPolyhedral oligomeric silsesquioxane on the electrospun poly-m-phenylene isophthalamid separators for lithium-ion batteries with high safety and excellent electrochemical performance. Chem Eng J 356:11–21. https://doi.org/10.1016/j.cej.2018.09.010

    Article  CAS  Google Scholar 

  36. Kim Y-H, Lee YU, Han J-I, Han S-M, Han M-K (2007) Influence of solvent on the film morphology, crystallinity and electrical characteristics of triisopropylsilyl pentacene OTFTs. J Electrochem Soc 154(12):995–998. https://doi.org/10.1149/1.2783765

    Article  CAS  Google Scholar 

  37. Thi Nga T, Paul U, Heredia-Guerrero JA, Liakos I, Marras S, Scarpellini A, Ayadi F, Athanassiou A, Bayer IS (2016) Transparent and flexible amorphous cellulose-acrylic hybrids. Chem Eng J 287:196–204. https://doi.org/10.1016/j.cej.2015.10.114

    Article  CAS  Google Scholar 

  38. Han DD, Liu S, Liu YT, Zhang Z, Li G-R, Gao X-P (2018) Lithiophilic gel polymer electrolyte to stabilize the lithium anode for a quasi-solid-state lithium-sulfur battery. J Mater Chem A 6(38):18627–18634. https://doi.org/10.1039/c8ta07685e

    Article  CAS  Google Scholar 

  39. Zhu M, Wu J, Zhong WH, Lan J, Sui G, Yang X (2018) A biobased composite gel polymer electrolyte with functions of lithium dendrites suppressing and manganese ions trapping. Adv Energy Mater 8(11). https://doi.org/10.1002/aenm.201702561

  40. Wang JY, Huang W, Pei A, Li Y, Shi F, Yu X, Cui Y (2019) Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat Energy 4:664–670. https://doi.org/10.1038/s41560-019-0413-3

    Article  CAS  Google Scholar 

Download references

Availability of data and material

All data generated or analyzed during the study are included in this submitted article.

Code availability

Not applicable.

Funding

This work was financially supported by National Science and Technology Major Project (grant number 2016ZX02025–004-006) and Science and Technology Project of China National Offshore Oil Corporation (grant number CNOOC-KJ 135 ZDXM 35 TJY 009–2017).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Fusheng Pan, Lina Qiao and Jianjie Wang. The first draft of the manuscript was written by Lina Qiao and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zan Chen or Zhongyi Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 754 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, F., Qiao, L., Yuan, B. et al. Polydopamine coated poly(m-phenylene isophthalamid) membrane as heat-tolerant separator for lithium-ion batteries. Ionics 26, 5471–5480 (2020). https://doi.org/10.1007/s11581-020-03699-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03699-y

Keywords

Navigation