Skip to main content

Advertisement

Log in

Electrochemical investigation of Zr-doped ZnO nanostructured electrode material for high-performance supercapacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Simple electrochemical capacitors are promising energy storage devices because of their power capability, charge/discharge rates and life cycle. Zinc oxide is an inexpensive and eco-friendly material which can be used as a supercapacitor electrode relative to other materials with great features. With a view to enhance the electrochemical performance of ZnO (Csp of 324), the present work is focused to synthesize modified ZnO nanostructures by the dopant Zr in three different compositions (3, 6 and 9 wt% Zr-doped ZnO) via chemical coprecipitation method. The synthesized materials were characterized by physio-chemical methods. The significant capacitive behaviour of ZnO and modified ZnO and 9 wt%Zr-doped ZnO nanostructure were investigated by cyclic voltammetric (CV) studies, galvanostatic charge-discharge (GCD) analysis and electrochemical impedance spectroscopic (EIS) methods in aqueous 1 M KOH. The newly fabricated 9 wt% Zr-doped ZnO electrode exhibited excellent specific capacitance of 518 Fg−1 at a current density of 1 Ag−1. Additionally, it depicted the capacitance retention of 94% even after 5000 successive GCD cycles. Moreover, the as-prepared materials demonstrated electrochemical reversible nature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hu W, Chen R, Xie W, Zou L, Qin N, Bao D (2014) CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl Mater Interfaces 6:19318–19326

    CAS  PubMed  Google Scholar 

  2. Chen H, Zhou S, Wu L (2014) Porous nickel hydroxide–manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Appl Mater Interfaces 6:8621–8630

    CAS  PubMed  Google Scholar 

  3. Yassine M, Fabris D (2017) Performance of commercially available supercapacitors. Energies 10:1340

    Google Scholar 

  4. Shinde N, Xia QX, Yun JM, Singh S, Mane RS, Kim K-H (2017) A binder-free wet chemical synthesis approach to decorate nanoflowers of bismuth oxide on Ni-foam for fabricating laboratory scale potential pencil-type asymmetric supercapacitor device. Dalton Trans 46:6601–6611

    CAS  PubMed  Google Scholar 

  5. Wei W, Mi L, Cui S, Wang B, Chen W (2015) Carambola-like Ni@Ni1.5Co1.5S2 for use in high-performance supercapacitor devices design. ACS Sustain Chem Eng 3:2777–2785

    CAS  Google Scholar 

  6. Peng L, Zhu Y, Li H, Yu G (2016) Chemically integrated inorganic-graphene two-dimensional hybrid materials for flexible energy storage devices. Small 12:6183–6199

    CAS  PubMed  Google Scholar 

  7. Kim Y-T, Tadai K, Mitani T (2005) Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. J Mater Chem 15:4914–4921

    CAS  Google Scholar 

  8. Gong D, Zhu J, Lu B (2016) RuO2@Co3O4 heterogeneous nanofibers: a high-performance electrode material for supercapacitors. RSC Adv 6:49173–49178

    CAS  Google Scholar 

  9. Bu IY, Huang R (2017) Fabrication of CuO-decorated reduced graphene oxide nanosheets for supercapacitor applications. Ceram Int 43:45–50

    CAS  Google Scholar 

  10. Feng L, Li G, Zhang S, Zhang YX (2017) Decoration of carbon cloth by manganese oxides for flexible asymmetric supercapacitors. Ceram Int 43:8321–8328

    CAS  Google Scholar 

  11. Zheng H, Kang W, Fengming Z, Tang F, Rufford TE, Wang L, Ma C (2010) Studies on mechanism of carbon nanotube and manganese oxide nanosheet self-sustained thin film for electrochemical capacitor. Solid State Ionics 181:1690–1696

    CAS  Google Scholar 

  12. Zhang F, Yuan C, Lu X, Zhang L, Che Q, Zhang X (2012) Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors. J Power Sources 203:250–256

    CAS  Google Scholar 

  13. Devi PG, Velu AS, Synthesis (2016) Structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method. J Theor Appl Phys 10:233–240

    Google Scholar 

  14. Hwang SG, Ryu SH, Yun SR, Ko JM, Kim KM, Ryu K-S (2011) Behavior of NiO-MnO2/MWCNT composites for use in a supercapacitor. Mater Chem Phys 130:507–512

    CAS  Google Scholar 

  15. Lang X, Zhang H, Xue X, Li C, Sun X, Liu Z, Nan H, Hu X, Tian H (2018) Rational design of La0.85Sr0.15MnO3@NiCo2O4 core-shell architecture supported on Ni foam for high performance supercapacitors. J Power Sources 402:213–220

    CAS  Google Scholar 

  16. Lang X, Mo H, Hu X, Tian H (2017) Supercapacitor performance of perovskite La1-xSrx MnO3. Dalton Trans 46:13720–13730

    CAS  PubMed  Google Scholar 

  17. Tian H, Lang X, Nan H, An P, Zhang W, Hu X, Zhang J (2019) Nanosheet-assembled LaMnO3@NiCo2O4 nanoarchitecture growth on Ni foam for high power density supercapacitors. Electrochim Acta 318:651–659

    CAS  Google Scholar 

  18. Lang X, Sun X, Liu Z, Nan H, Li C, Hu X, Tian H (2019) Ag nanoparticles decorated perovskite La0.85Sr0.15MnO3 as electrode materials for supercapacitors. Mater Lett 243:34–37

    CAS  Google Scholar 

  19. Wang J, Gao Z, Li Z, Wang B, Yan Y, Liu Q, Mann T, Zhang M, Jiang Z (2011) Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties. J Solid State Chem 184:1421–1427

    CAS  Google Scholar 

  20. Nithiyadevi K, Ravichandran K (2017) Enhancement of photocatalytic and antibacterial activities of ZnO:Ag nanopowders through the addition of bamboo charcoal: an efficient natural adsorbent. Acta Metall Sin Engl 30:1249–1256

    CAS  Google Scholar 

  21. Khan I, Khan S, Nongjai R, Ahmed H, Khan W (2013) Structural and optical properties of gel-combustion synthesized Zr doped ZnO nanoparticles. Opt Mater 35:1189–1193

    CAS  Google Scholar 

  22. Kim H, Horwitz J, Kim W, Mäkinen A, Kafafi Z, Chrisey D (2002) Doped ZnO thin films as anode materials for organic light-emitting diodes. Thin Solid Films 420:539–543

    Google Scholar 

  23. Tsay C-Y, Lee W-C (2013) Effect of dopants on the structural, optical and electrical properties of sol–gel derived ZnO semiconductor thin films. Curr Appl Phys 13:60–65

    Google Scholar 

  24. Quintana A, Altube A, García-Lecina E, Suriñach S, Baró MD, Sort J, Pellicer E, Guerrero M (2017) A facile co-precipitation synthesis of heterostructured ZrO2|ZnO nanoparticles as efficient photocatalysts for wastewater treatment. J Mater Sci 52:13779–13789

    CAS  Google Scholar 

  25. Ito Y, Nyce M, Plivelich R, Klein M, Steingart D, Banerjee S (2011) Zinc morphology in zinc–nickel flow assisted batteries and impact on performance. J Power Sources 196:2340–2345

    CAS  Google Scholar 

  26. Bronoel G, Millot A, Tassin N (1991) Development of Ni-Zn cells. J Power Sources 34:243–255

    CAS  Google Scholar 

  27. He X, Yoo JE, Lee MH, Bae J (2017) Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires. Nanotechnology 28:245402

    PubMed  Google Scholar 

  28. Li Z, Zhou Z, Yun G, Shi K, Lv X, Yang B (2013) High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites. Nanoscale Res Lett 8:473

    PubMed  PubMed Central  Google Scholar 

  29. Selvakumar M, Bhat DK, Aggarwal AM, Iyer SP, Sravani G (2010) Nano ZnO-activated carbon composite electrodes for supercapacitors. Phys B Condens Matter 405:2286–2289

    CAS  Google Scholar 

  30. Kalpana D, Omkumar K, Kumar SS, Renganathan N (2006) A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor. Electrochim Acta 52:1309–1315

    CAS  Google Scholar 

  31. Jayalakshmi M, Palaniappa M, Balasubramanian K (2008) Single step solution combustion synthesis of ZnO/carbon composite and its electrochemical characterization for supercapacitor application. Int J Electrochem Sci 3:96–103

    CAS  Google Scholar 

  32. Reddy IN, Reddy CV, Sreedhar A, Shim J, Cho M, Yoo K, Kim D (2018) Structural, optical, and bifunctional applications: Supercapacitor and photoelectrochemical water splitting of Ni-doped ZnO nanostructures. J Electroanal Chem 828:124–136

    Google Scholar 

  33. Alver U, Tanrıverdi A (2016) Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors. Appl Surf Sci 378:368–374

    CAS  Google Scholar 

  34. Huang M, Li F, Zhao XL, Luo D, You XQ, Zhang YX, Li G (2015) Hierarchical ZnO@MnO2 core-shell pillar arrays on Ni foam for binder-free supercapacitor electrodes. Electrochim Acta 152:172–177

    CAS  Google Scholar 

  35. Karthika K, Ravichandran K (2015) Enhancing the magnetic and antibacterial properties of ZnO nanopowders through Mn+ Co doping. Ceram Int 41:7944–7951

    CAS  Google Scholar 

  36. Gokulakrishnan V, Parthiban S, Jeganathan K, Ramamurthi K (2011) Investigation on the effect of Zr doping in ZnO thin films by spray pyrolysis. Appl Surf Sci 257:9068–9072

    CAS  Google Scholar 

  37. Herodotou S, Treharne R, Durose K, Tatlock G, Potter R (2015) The effects of Zr doping on the optical, electrical and microstructural properties of thin ZnO films deposited by atomic layer deposition. Materials 8:7230–7240

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Clament Sagaya Selvam N, Vijaya JJ, Kennedy LJ (2012) Effects of morphology and Zr doping on structural, optical, and photocatalytic properties of ZnO nanostructures. Ind Eng Chem Res 51:16333–16345

    CAS  Google Scholar 

  39. Zhang J, Gao D, Yang G, Zhang J, Shi Z, Zhang Z, Zhu Z, Xue D (2011) Synthesis and magnetic properties of Zr doped ZnO nanoparticles. Nanoscale Res Lett 6:587

    PubMed  PubMed Central  Google Scholar 

  40. Bahedi K, Addou M, El Jouad M, Bayoud S, Sofiani Z (2009) Effects of deposition temperature on the surface roughness and the nonlinear optical susceptibility of sprayed deposited ZnO: Zr thin films. Appl Surf Sci 255:9054–9057

    CAS  Google Scholar 

  41. Wang F, Cao M, Qin Y, Zhu J, Wang L, Tang Y (2016) ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive performance. RSC Adv 6:88934–88942

    CAS  Google Scholar 

  42. Anandhi P, Kumar VJS, Harikrishnan S (2019) Preparation and enhanced capacitive behavior of Ni-ZnO nanocomposite as electrode for supercapacitor. Mater Today Proc 9:361–370

    CAS  Google Scholar 

  43. Shanmugavani A, Selvan RK (2016) Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors. Electrochim Acta 188:852–862

    CAS  Google Scholar 

  44. Jadhav HS, Pawar SM, Jadhav AH, Thorat GM, Seo JG (2016) Hierarchical mesoporous 3D flower-like CuCo2O4/NF for high-performance electrochemical energy storage. Sci Rep 6:31120

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yadav MS, Singh N, Kumar A (2018) Synthesis and characterization of zinc oxide nanoparticles and activated charcoal based nanocomposite for supercapacitor electrode application. J Mater Sci Mater Electron 29:6853–6869

    CAS  Google Scholar 

  46. Anzlovar A, Orel ZC, Kogej K, Zigon M (2012) Polyol-mediated synthesis of zinc oxide nanorods and nanocomposites with poly (methyl methacrylate). J Nanomater 2012:31

    Google Scholar 

  47. Verma S, Jain SL (2014) Nanosized zinc peroxide (ZnO2): a novel inorganic oxidant for the oxidation of aromatic alcohols to carbonyl compounds. Inorg Chem Front 1:534–539

    CAS  Google Scholar 

  48. Chen Y-L, Hu Z-A, Chang Y-Q, Wang H-W, Zhang Z-Y, Yang Y-Y, Wu H-Y (2011) Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J Phys Chem C 115:2563–2571

    CAS  Google Scholar 

  49. Madhu R, Veeramani V, Chen S-M, Veerakumar P, Liu S-B, Miyamoto N (2016) Functional porous carbon–ZnO nanocomposites for high-performance biosensors and energy storage applications. Phys Chem Chem Phys 18:16466–16475

    CAS  PubMed  Google Scholar 

  50. Yang J, Zhang Y, Qin C, Ding X, Zhang J (2019) Enhanced stability in Zr-doped ZnO TFTs with minor influence on mobility by atomic layer deposition. IEEE Trans Electron Devices 66:1760–1765

    CAS  Google Scholar 

  51. Tsay C-Y, Fan K-S (2008) Optimization of Zr-doped ZnO thin films prepared by sol-gel method. Mater Trans 49:1900–1904

    CAS  Google Scholar 

  52. Murtaza G, Ahmad R, Rashid M, Hassan M, Hussnain A, Khan MA, ul Haq ME, Shafique M, Riaz S (2014) Structural and magnetic studies on Zr doped ZnO diluted magnetic semiconductor. Curr Appl Phys 14:176–181

    Google Scholar 

  53. Iwantono I, Nurwidya W, Lestari L, Naumar F, Nafisah S, Umar A, Rahman MYA, Salleh MM (2015) Effect of growth temperature and time on the ZnO film properties and the performance of dye-sensitized solar cell (DSSC). J Solid State Electrochem 19:1217–1221

    CAS  Google Scholar 

  54. Heo K, Lee J-S, Kim H-S, Kim J, Lim J (2017) Enhanced electrochemical performance of ionic-conductor coated Li [Ni0.7Co0.15Mn0.15]O2. J Electrochem Soc 164:A2398–A2402

    CAS  Google Scholar 

  55. Srinivasan S, Berchmans LJ, Usmaniya M (2019) Molten salt synthesis of nano structured pyrochlore lanthanum zirconate: a potential material for high temperature applications. Mater Res Express 6:104001

    CAS  Google Scholar 

  56. Reddy BS, Reddy SV, Reddy NK (2013) Physical and magnetic properties of (Co, Ag) doped ZnO nanoparticles. J Mater Sci Mater Electron 24:5204–5210

    Google Scholar 

  57. Ponnusamy R, Sivasubramanian D, Sreekanth P, Gandhiraj V, Philip R, Bhalerao G (2015) Nonlinear optical interactions of Co: ZnO nanoparticles in continuous and pulsed mode of operations. RSC Adv 5:80756–80765

    CAS  Google Scholar 

  58. Baruah S, Mahmood MA, Myint MTZ, Bora T, Dutta J (2010) Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods. Beilstein J Nanotechnol 1:14–20

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhu D, Shao Y (2018) NiO/ZnO Nanocomposite as Electrode Material for Supercapacitors. Int J Electrochem Sci 13:3601–3612

    CAS  Google Scholar 

  60. Wang S, Pu J, Tong Y, Cheng Y, Gao Y, Wang Z (2014) ZnCo2O4 nanowire arrays grown on nickel foam for high-performance pseudocapacitors. J Mater Chem A 2:5434–5440

    CAS  Google Scholar 

  61. Yuan G, Xiang J, Jin H, Wu L, Jin Y, Zhao Y (2018) Anchoring ZnO nanoparticles in nitrogen-doped graphene sheets as a high-performance anode material for lithium-ion batteries. Materials 11:96

    PubMed Central  Google Scholar 

  62. Ganesh RS, Durgadevi E, Navaneethan M, Patil V, Ponnusamy S, Muthamizhchelvan C, Kawasaki S, Patil P, Hayakawa Y (2017) Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle decorated microspheres. J Alloys Compd 721:182–190

    Google Scholar 

  63. Li S-S, Su Y-K (2019) Improvement of the performance in Cr-doped ZnO memory devices via control of oxygen defects. RSC Adv 9:2941–2947

    CAS  Google Scholar 

  64. Wei X, Man B, Liu M, Xue C, Zhuang H, Yang C (2007) Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2. Phys B Condens 388:145–152

    CAS  Google Scholar 

  65. Chen M, Wang X, Yu Y, Pei Z, Bai X, Sun C, Huang R, Wen L (2000) X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl Surf Sci 158:134–140

    CAS  Google Scholar 

  66. Jimenez V, Fernández A, Espinós J, González-Elipe A, Phenomena R (1995) The state of the oxygen at the surface of polycrystalline cobalt oxide. J Electron Spectros Relat Phenomena 71:61–71

    CAS  Google Scholar 

  67. Juma A, Acik IO, Oluwabi A, Mere A, Mikli V, Danilson M, Krunks M (2016) Zirconium doped TiO2 thin films deposited by chemical spray pyrolysis. Appl Surf Sci 387:539–545

    CAS  Google Scholar 

  68. Ramachandran R, Xuan W, Zhao C, Leng X, Sun D, Luo D, Wang F (2018) Enhanced electrochemical properties of cerium metal–organic framework based composite electrodes for high-performance supercapacitor application. RSC Adv 8:3462–3469

    CAS  Google Scholar 

  69. Wei X, Wan S, Jiang X, Wang Z, Gao S (2015) Peanut-shell-like porous carbon from nitrogen-containing poly-N-phenylethanolamine for high-performance supercapacitor. ACS Appl Mater Interfaces 7:22238–22245

    CAS  PubMed  Google Scholar 

  70. Barakat A, Al-Noaimi M, Suleiman M, Aldwayyan A, Hammouti B, Hadda T, Haddad S, Boshaala A, Warad I (2013) One step synthesis of NiO nanoparticles via solid-state thermal decomposition at low-temperature of novel aqua (2,9-dimethyl-1,10-phenanthroline) NiCl2 complex. Int J Mol Sci 14:23941–23954

    PubMed  PubMed Central  Google Scholar 

  71. Zhang F, Bao Y, Ma S, Liu L, Shi X (2017) Hierarchical flower-like nickel phenylphosphonate microspheres and their calcined derivatives for supercapacitor electrodes. J Mater Chem A 5:7474–7481

    CAS  Google Scholar 

  72. Elanthamilan E, Sarala L, Bella A, Sathiyan A, Lydia S, Merlin P (2017) Electro-organic synthesis of 2-(4, 5-diphenyl-1H-imidazol-2-yl) phenol in aqueous medium for organic monomer based supercapacitor electrode. Electrochim Acta 251:32–42

    CAS  Google Scholar 

  73. Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88

    CAS  PubMed  Google Scholar 

  74. Chodankar NR, Dubal DP, Kwon Y, Kim D-H (2017) Direct growth of FeCo2O4 nanowire arrays on flexible stainless steel mesh for high-performance asymmetric supercapacitor. NPG Asia Mater 9:419

    Google Scholar 

  75. Nan H, Liu M, Zhang W, Zhang Q, Xu J, Hu X, Tian H (2020) One-step synthesis of NiCo2S4 with high electrochemical performance used for hybrid capacitor. J Alloys Compd 155037

  76. Nan H, Liu M, Zhang Q, Wang M, Liu S, Qiao L, Hu X, Tian H (2020) Intrinsic energy-storage mechanism of low crystallinity nickel-cobalt sulfide as anode material for supercapacitors. J Power Sources 451:227822

    CAS  Google Scholar 

  77. Hu X, Nan H, Liu M, Liu S, An T, Tian H (2019) Battery-like MnCo2O4 electrode materials combined with active carbon for hybrid supercapacitors. Electrochim Acta 306:599–609

    CAS  Google Scholar 

  78. Mo H, Nan H, Lang X, Liu S, Qiao L, Hu X, Tian H (2018) Influence of calcium doping on performance of LaMnO3 supercapacitors. Ceram Int 44:9733–9741

    CAS  Google Scholar 

  79. Kim CH, Kim B-H (2015) Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes. J Power Sources 274:512–520

    CAS  Google Scholar 

  80. Chee WK, Lim HN, Huang NM (2015) Electrochemical properties of free-standing polypyrrole/graphene oxide/zinc oxide flexible supercapacitor. Int J Energy Res 39:111–119

    CAS  Google Scholar 

  81. Dong X, Cao Y, Wang J, Chan-Park MB, Wang L, Huang W, Chen P (2012) Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv 2:4364–4369

    CAS  Google Scholar 

  82. Zheng X, Sun Y, Yan X, Sun X, Zhang G, Zhang Q, Jiang Y, Gao W, Zhang Y (2016) High carrier concentration ZnO nanowire arrays for binder-free conductive support of supercapacitors electrodes by Al doping. J Colloid Interface Sci 484:155–161

    CAS  PubMed  Google Scholar 

  83. Theerthagiri J, Durai G, Tatarchuk T, Sumathi M, Kuppusami P, Qin J, Choi MY (2019) Synthesis of hierarchical structured rare earth metal-doped Co3O4 by polymer combustion method for high performance electrochemical supercapacitor electrode materials. Ionics 1–11

Download references

Acknowledgments

The authors thank the management of Bishop Heber College (Autonomous), Tiruchirappalli – 620017, Tamil Nadu, India, for the support and facilities provided through Material Chemistry Lab, PG and Research Department of Chemistry and DST-FIST Instrumentation Centre (HAIF) at Bishop Heber College.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Princy Merlin or A. T. Ravichandran.

Ethics declarations

Conflict to interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelin, M.D., Rajkumar, S., Merlin, J.P. et al. Electrochemical investigation of Zr-doped ZnO nanostructured electrode material for high-performance supercapacitor. Ionics 26, 5757–5772 (2020). https://doi.org/10.1007/s11581-020-03681-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03681-8

Keywords

Navigation