Skip to main content

Advertisement

Log in

Template agent for assisting in the synthesis of ZnCo2O4 on Ni foam for high-performance supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Zinc cobalt oxide (ZnCo2O4) is successfully achieved by a simple hydrothermal process and adjusting the annealing temperature, utilizing sodium dodecyl sulfate (SDS), polyvinylpyrrolidone (PVP), cetyltrimethyl ammonium bromide (CTAB), and polyvinyl alcohol (PVA) as template agents. The prepared ZnCo2O4 exhibits a different morphological structure by adding a templating agent, which exhibits high capacitance and cycle stability. Specially, the ZnCo2O4 electrode using 1 g of PVP exhibited a superior performance with a high specific capacity of 1527.2 F g−1 at a current density of 1 A g−1 and 1204 F g−1 at 10 A g−1. In addition, P-ZCO was used as the positive electrode, and activated carbon (AC) was used as the negative electrode to assemble an asymmetric supercapacitor device. It has an energy density of 69.2 Wh kg−1 at a power density of 774.6 W kg−1, and a retention rate of 77% at a current density of 10 A g−1, which exhibits excellent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors, scientific fundamentals and technological applications, Kluwer Academic/Plenum Publishers, NewYork

    Google Scholar 

  2. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  Google Scholar 

  3. Qiu KW, Lu Y, Zhang DY, Cheng JB, Yan HL, Xu JY, Liu XM, Kim JK, Luo YS (2015) Mesoporous, hierarchical core/shell structured ZnCo2O4/MnO2 nanocone forests for high-performance supercapacitors. Nano Energy 11:687–696

    CAS  Google Scholar 

  4. Bai X, Liu Q, Liu J, Zhang H, Li Z, Jing X, Liu P, Wang J, Li R (2017) Hierarchical Co3O4@Ni(OH)2 core-shell nanosheet arrays for isolated all-solid state supercapacitor electrodes with superior electrochemical performance. Chem Eng J 315:35–45

    CAS  Google Scholar 

  5. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    CAS  Google Scholar 

  6. Fu G, Ma L, Gan M, Zhang X, Jin M,Lei Y, Yang P, Yan M (2017) Fabrication of 3D spongia-shaped polyaniline/MoS2 nanospheres composite assisted by polyvinylpyrrolidone (PVP) for high-performance supercapacitors. Synth Met 224:36–45

    CAS  Google Scholar 

  7. Nishino A (1996) Capacitors: operating principles, current market and technical trends. J Power Sources 60:137–147

    CAS  Google Scholar 

  8. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101:109–116

    CAS  Google Scholar 

  9. Xiong W, Liu MX, Gan LH, Lv YK, Li Y, Yang L, Xu ZJ, Hao ZX, Liu HL, Chen LL (2011) A novel synthesis of mesoporous carbon microspheres for supercapacitor electrodes. J Power Sources 196:10461–10464

    CAS  Google Scholar 

  10. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as supercapacitor electrodes. Nat Mater 5:987–994

    CAS  PubMed  Google Scholar 

  11. Chun X, Chang M (2011) A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance. Energy Environ Sci 4:4504

    Google Scholar 

  12. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    CAS  Google Scholar 

  13. Liu CG, Yu ZN, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    CAS  PubMed  Google Scholar 

  14. Snooka GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Google Scholar 

  15. Lee JW, Hall AS, Kim JD, Thomas ME (2012) A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem Mater 24:1158–1164

    CAS  Google Scholar 

  16. Wang XY, Wang XY, Yi LH, Liu L, Dai YZ, Wu H (2013) Preparation and capacitive properties of the core–shell structure carbon aerogel microbeads-nanowhisker-like NiO composites. J Power Sources 224:317–323

    CAS  Google Scholar 

  17. Wang XY, Wang XY, Liu L, Yi LH, Hu CY, Zhang XY, Yi W (2011) Synthesis and supercapacitive behavior of carbon aerogel microbeads encapsulated by in situ Co3O4 nanoparticle. Synth Met 161:1725–1730

    CAS  Google Scholar 

  18. Wu C, Wang XY, Ju BW, Zhang XY, Jiang LL, Wu H (2012) Supercapacitive behaviors of activated mesocarbon microbeads coated with polyaniline. Int J Hydrog Energy 37:14365–14372

    CAS  Google Scholar 

  19. An HF, Wang Y, Wang XY, Zheng LP, Wang XY, Yi LH, Bai L, Zhang XY (2010) Polypyrrole/carbon aerogel composite materials for supercapacitor. J Power Sources 195:6964–6969

    CAS  Google Scholar 

  20. Zhang S-W, Yin B-S, Liu C, Wang Z-B, Gu D-M (2017) Self-assembling hierarchical NiCo2O4/MnO2 nanosheets and MoO3/PPy core-shell heterostructured nanobelts for supercapacitor. Chem Eng J 312:296–305

    CAS  Google Scholar 

  21. Cheng C, Chen F, Wang J, Lai G, Yi H (2016) Synthesis of nano-CuCo2O4 with high electrochemical performance as anode material in lithium-ion batteries. J Electron Mater 45:553–556

    CAS  Google Scholar 

  22. Gu S, Xu J, Lu B (2016) Crumpled ZnMn2O4 nanosheets for long-term-cycling lithium ion battery anodes. Energy Technol 4:1106–1111

    CAS  Google Scholar 

  23. Liu B, Liu B, Wang Q, Wang X, Xiang Q, Chen D, Shen G (2013) New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. ACS Appl Mater 5:10011–10017

    CAS  Google Scholar 

  24. Rajeshkhanna G, Umeshbabu E, Justin P, Rao GR (2017) Spinel ZnCo2O4 nanosheets as carbon and binder free electrode material for energy storage and electroreduction of H2O2. J Alloy Compd 696:947–955

    CAS  Google Scholar 

  25. Guan BK, Guo D, Hu LL, Zhang GH, Fu T, Ren WJ, Li JD, Li QH (2014) Facile synthesis of ZnCo2O4 nanowire cluster arrays on Ni foam for high-performance asymmetric supercapacitors. J Mater Chem A 2:16116–16123

    CAS  Google Scholar 

  26. Moon IK, Yoon S, Oh JW (2017) Three-dimensional hierarchically mesoporous ZnCo2O4 nanowires grown on graphene/sponge foam for high-performance, flexible, all-solid-state supercapacitors. Chem-Eur J 23:597–604

    CAS  PubMed  Google Scholar 

  27. Zhang H, Chen Y, Wang W, Zhang G, Zhuo M, Zhang H, Yang T, Li Q, Wang T (2013) Hierarchical Mo-decorated Co3O4 nanowire arrays on Ni foam substrates for advanced electrochemical capacitors. J Mater Chem A 1:8593–8600

    CAS  Google Scholar 

  28. Wang SB, Pu J, Tong Y, Cheng YY, Gao Y, Wang ZH (2014) ZnCo2O4 nanowire arrays grown on nickel foam for high-performance pseudocapacitors. J Mater Chem A 2:5434–5440

    CAS  Google Scholar 

  29. Vijayakumar S, Nagamuthu S, Lee SH, Ryu KS (2017) Porous thin layered nanosheets assembled ZnCo2O4 grown on Ni-foam as an efficient electrode material for hybrid supercapacitor applications. Int J Hydrogen Energ 42:3122–3129

    CAS  Google Scholar 

  30. Pan Y, Gao H, Zhang MY, Li L, Wang GN, Shan XY (2017) Three-dimensional porous ZnCo2O4 sheet array coated with Ni(OH) 2 for high-performance asymmetric supercapacitor. J Colloid Interf Sci 497:50–56

    CAS  Google Scholar 

  31. Singh A, Akhtar MA, Chandra A (2017) Trade-off between capacitance and cycling at elevated temperatures in redox additive aqueous electrolyte based high performance asymmetric supercapacitors. Electrochim Acta 229:291–298

    CAS  Google Scholar 

  32. Zhang L, Ou M, Yao H, Li Z, Qu D, Liu F, Wang J, Wang J, Li Z (2015) Enhanced supercapacitive performance of graphite-like C3N4 assembled with NiAl-layered double hydroxide. Electrochim Acta 186:292–301

    CAS  Google Scholar 

  33. Qu B, Hu L, Li Q, Wang Y, Chen L, Wang T (2014) High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo2O4 nanostructures on current collectors. ACS Appl Mater Interfaces 6:731–736

    CAS  PubMed  Google Scholar 

  34. Wang B, Williams GR, Chang Z, Jiang M, Liu J, Lei X, Sun X (2014) Hierarchical NiAl layered double hydroxide/multiwalled carbon nanotube/nickel foam electrodes with excellent pseudocapacitive properties. ACS Appl Mater Interfaces 6(18):16304–16311

    CAS  PubMed  Google Scholar 

  35. Xiong S, Qiang R, Beibei Z et al (2014) Flake-by-flake ZnCo2O4 as a high capacity anode material for lithium-ion battery. J Alloys Compd 585:518–522

    Google Scholar 

  36. Huixin C, Qiaobao Z, Wang J et al (2014) Mesoporous ZnCo2O4 microspheres composed of ultrathin nanosheets cross-linked with metallic NiSix nanowires on Ni foam as anodes for lithium ion batteries. Nano Energy 10:245–258

    Google Scholar 

  37. Zhu Y, Wang J, Wu Z et al (2015) An electrochemical exploration of hollow NiCo2O4 submicrospheres and its capacitive perfor- mances. J Power Sources 287(ISSN):307–315

    CAS  Google Scholar 

  38. Zhao Y, HeX CR et al (2018) A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO 4 @NiCo layered double hydroxide core-shell heterostructures. Chem Eng J 352:29–38

    CAS  Google Scholar 

  39. Ding R, Gao H, Zhang MY, Zhang J, Zhang XT (2015) Controllable synthesis of Ni3-xCoxS4 nanotube arrays with different aspect ratios grown on carbon cloth for high-capacity supercapacitors. RSC Adv 5:48631–48637

    CAS  Google Scholar 

  40. Liu ZQ, Chen GF, Zhou PL, Li N, Su YZ (2016) Building layered NixCo2x(OH)6x nanosheets decorated three-dimensional Ni frameworks for electrochemical applications. J Power Sources 317:1–9

    CAS  Google Scholar 

  41. Niu H, Yang X, Jiang H, Zhou D, Li X, Zhang T, Liu JY, Wang Q, Qu FY (2015) Hierarchical core–shell heterostructure of porous carbon nanofiber@ZnCo 2 O 4 nanoneedle arrays: advanced binder-free electrodes for all-solid-state supercapacitors. J Mater Chem A 3:24082–24094

    CAS  Google Scholar 

  42. Shen L, Uchaker E, Zhang X, Cao G (2012) Hydrogenated Li(4)Ti(5)O(12) nanowire arrays for high rate lithium ion batteries. Adv Mater 24(48):6502–6506

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enshan Han.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, C., Han, E., Sun, L. et al. Template agent for assisting in the synthesis of ZnCo2O4 on Ni foam for high-performance supercapacitors. Ionics 26, 383–391 (2020). https://doi.org/10.1007/s11581-019-03189-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03189-w

Keywords

Navigation