Skip to main content
Log in

Effects of annealing temperature on the electrochemical characteristics of ZnO microrods as anode materials of lithium-ion battery using chemical bath deposition

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This study reports a facile synthesis of ZnO microrods using chemical bath deposition (CBD) for anode materials of lithium-ion batteries (LIB). During the synthesis, we controlled the uniformity, the density, and the diameter growth of ZnO microrods in order to find the optimum conditions. In particular, the effects of annealing temperature on the ZnO microrod morphology, structure, and electrochemical performances were further investigated. The size, alignment, and uniformity of the ZnO microrods were evaluated by scanning electron microscopy (SEM), while structural analysis was performed by X-ray diffraction (XRD) technique. The results showed that the annealing temperatures significantly influenced the ZnO microrod growth. We found the excellent experimental parameters were achieved at annealing temperature of 150 °C (ZnO_150) within 10 min and three seed layers, providing an average diameter of ~ 233.6 nm, crystallite size of 46.01 nm, and the density of 5.05 rods/μm2. Among the other samples, the ZnO_150 microrods delivered the highest initial discharge capacity of 811 mAhg−1 with relatively stable capacity retention of ~ 82% after 80 cycles and excellent rate capability performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang P, Gao M, Pan H, Zhang J, Liang C, Wang J, Zhou P, Liu Y (2013) A facile synthesis of Fe3O4/C composite with high cycle stability as anode material for lithium-ion batteries. J Power Sources 239:466–474

    Article  CAS  Google Scholar 

  2. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499

    Article  CAS  PubMed  Google Scholar 

  3. Xiaowei S, Yang Y (2016) ZnO nanostructures and their applications. CRC Press

  4. Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Materials 7(4):2833–2881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fu Z-W, Huang F, Zhang Y, Chu Y, Qin Q-Z (2003) The electrochemical reaction of zinc oxide thin films with lithium. J Electrochem Soc 150(6):A714–A720

    Article  CAS  Google Scholar 

  6. Zhang C, Tu J, Yuan Y, Huang X, Chen X, Mao F (2007) Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries. J Electrochem Soc 154(2):A65–A69

    Article  CAS  Google Scholar 

  7. Liu J, Li Y, Ding R, Jiang J, Hu Y, Ji X, Chi Q, Zhu Z, Huang X (2009) Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability. J Phys Chem C 113(13):5336–5339

    Article  CAS  Google Scholar 

  8. YAN G-F, FANG H-S, LI G-S, LI L-P, ZHAO H-J, YANG Y (2009) Improved electrochemical performance of Mg-doped ZnO thin film as anode material for lithium ion batteries ①. 结构化学 (JIEGOU HUAXUE) 28 (4)

  9. Belliard F, Irvine J (2001) Electrochemical performance of ball-milled ZnO–SnO2 systems as anodes in lithium-ion battery. J Power Sources 97:219–222

    Article  Google Scholar 

  10. Huang X, Xia X, Yuan Y, Zhou F (2011) Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim Acta 56(14):4960–4965

    Article  CAS  Google Scholar 

  11. Park KT, Xia F, Kim SW, Kim SB, Song T, Paik U, Park WI (2013) Facile synthesis of ultrathin ZnO nanotubes with well-organized hexagonal nanowalls and sealed layouts: applications for lithium ion battery anodes. J Phys Chem C 117(2):1037–1043

    Article  CAS  Google Scholar 

  12. Li F, Yang L, Xu G, Xiaoqiang H, Yang X, Wei X, Ren Z, Shen G, Han G (2013) Hydrothermal self-assembly of hierarchical flower-like ZnO nanospheres with nanosheets and their application in Li-ion batteries. J Alloys Compd 577:663–668

    Article  CAS  Google Scholar 

  13. Zhang W, Du L, Chen Z, Hong J, Yue L (2016) ZnO nanocrystals as anode electrodes for lithium-ion batteries. J Nanomater 2016:1–7

  14. Zhang G, Hou S, Zhang H, Zeng W, Yan F, Li Cheng C, Duan H (2015) High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode. Adv Mater 27(14):2400–2405. https://doi.org/10.1002/adma.201405222

    Article  CAS  PubMed  Google Scholar 

  15. Zhang G, Song Y, Zhang H, Xu J, Duan H, Liu J (2016) Radially aligned porous carbon nanotube arrays on carbon fibers: a hierarchical 3D carbon nanostructure for high-performance capacitive energy storage. Adv Funct Mater 26(18):3012–3020

    Article  CAS  Google Scholar 

  16. Tang Z, Zhang G, Zhang H, Wang L, Shi H, Wei D, Duan H (2018) MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors. Energy Storage Materials 10:75–84

    Article  Google Scholar 

  17. Zou Y, Qi Z, Jiang W, Duan J, Ma Z (2017) MWCNTs enhanced ZnO nanoparticles as anode for lithium ion batteries. Mater Lett 199:57–60

    Article  CAS  Google Scholar 

  18. Huang X, Guo R, Wu J, Zhang P (2014) Mesoporous ZnO nanosheets for lithium ion batteries. Mater Lett 122:82–85

    Article  CAS  Google Scholar 

  19. Cao B, Lorenz M, Rahm A, Von Wenckstern H, Czekalla C, Lenzner J, Benndorf G, Grundmann M (2007) Phosphorus acceptor doped ZnO nanowires prepared by pulsed-laser deposition. Nanotechnology 18(45):455707

    Article  CAS  Google Scholar 

  20. Agarwal D, Chauhan R, Avasthi D, Sulania I, Kabiraj D, Thakur P, Chae K, Chawla A, Chandra R, Ogale S (2009) VLS-like growth and characterizations of dense ZnO nanorods grown by e-beam process. J Phys D Appl Phys 42(3):035310

    Article  CAS  Google Scholar 

  21. Liu X, Wu X, Cao H, Chang R (2004) Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J Appl Phys 95(6):3141–3147

    Article  CAS  Google Scholar 

  22. Zhao Y, Li C, Chen M, Yu X, Chang Y, Chen A, Zhu H, Tang Z (2016) Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition. Phys Lett A 380(47):3993–3997

    Article  CAS  Google Scholar 

  23. Kumar Y, Rana AK, Bhojane P, Pusty M, Bagwe V, Sen S, Shirage PM (2015) Controlling of ZnO nanostructures by solute concentration and its effect on growth, structural and optical properties. Materials Research Express 2(10):105017

    Article  CAS  Google Scholar 

  24. Liu B, Zeng HC (2003) Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc 125(15):4430–4431

    Article  CAS  Google Scholar 

  25. Yang J, Zheng J, Zhai H, Yang X, Yang L, Liu Y, Lang J, Gao M (2010) Oriented growth of ZnO nanostructures on different substrates via a hydrothermal method. J Alloys Compd 489(1):51–55

    Article  CAS  Google Scholar 

  26. Yin Y, Que W, Kam C (2010) ZnO nanorods on ZnO seed layer derived by sol–gel process. J Sol-Gel Sci Technol 53(3):605–612

    Article  CAS  Google Scholar 

  27. Poornajar M, Marashi P, Fatmehsari DH, Esfahani MK (2016) Synthesis of ZnO nanorods via chemical bath deposition method: the effects of physicochemical factors. Ceram Int 42 ((1):173–184

    Article  CAS  Google Scholar 

  28. Cao B, Cai W (2008) From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions. J Phys Chem C 112(3):680–685

    Article  CAS  Google Scholar 

  29. Sholehah A, Yuwono AH (2015) The effects of annealing temperature and seed layer on the growth of ZnO Nanorods in a chemical bath deposition process. International Journal of Technology 6(4):565–572

    Article  Google Scholar 

  30. Monshi A, Foroughi MR, Monshi MR (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering 2(03):154–160

    Article  CAS  Google Scholar 

  31. Wahid KA, Lee WY, Lee HW, Teh AS, Bien DC, Azid IA (2013) Effect of seed annealing temperature and growth duration on hydrothermal ZnO nanorod structures and their electrical characteristics. Appl Surf Sci 283:629–635

    Article  CAS  Google Scholar 

  32. Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater 15(5):464–466

    Article  CAS  Google Scholar 

  33. Thein MT, Pung S-Y, Aziz A, Itoh M (2015) Stacked ZnO nanorods synthesized by solution precipitation method and their photocatalytic activity study. J Sol-Gel Sci Technol 74(1):260–271

    Article  CAS  Google Scholar 

  34. Babapour A, Yang B, Bahang S, Cao W (2011) Low-temperature sol-gel-derived nanosilver-embedded silane coating as biofilm inhibitor. Nanotechnology 22(15):155602

    Article  CAS  PubMed  Google Scholar 

  35. Samsuri S, Rahman M, Umar A, Salleh M (2017) Influence of ZnO growth temperature on the performance of dye-sensitized solar cell utilizing TiO 2-ZnO composite film photoanode. Ionics 23(12):3533–3544

    Article  CAS  Google Scholar 

  36. Park GC, Hwang SM, Lee SM, Choi JH, Song KM, Kim HY, Kim H-S, Eum S-J, Jung S-B, Lim JH (2015) Hydrothermally grown In-doped ZnO nanorods on p-GaN films for color-tunable heterojunction light-emitting-diodes. Sci Rep 5

  37. Lupan O, Pauporté T, Chow L, Viana B, Pellé F, Ono L, Cuenya BR, Heinrich H (2010) Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl Surf Sci 256(6):1895–1907

    Article  CAS  Google Scholar 

  38. Shang C, Barnabé A (2013) Structural study and phase transition investigation in a simple synthesis of porous architected-ZnO nanopowder. Mater Charact 86:206–211

    Article  CAS  Google Scholar 

  39. Vyas RN, Wang B (2010) Electrochemical analysis of conducting polymer thin films. Int J Mol Sci 11(4):1956–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou G, Wang D-W, Li F, Zhang L, Li N, Wu Z-S, Wen L, Lu GQ, Cheng H-M (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22(18):5306–5313

    Article  CAS  Google Scholar 

  41. Wang H, Pan Q, Cheng Y, Zhao J, Yin G (2009) Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochim Acta 54(10):2851–2855

    Article  CAS  Google Scholar 

  42. Hudaya C, Kang B, Jung H-G, Choi W, Jeon BJ, Lee JK (2015) Plasma-polymerized C60 as a functionalized coating layer on fluorine-doped tin oxides for anode materials of lithium-ion batteries. Carbon 81:835–838

    Article  CAS  Google Scholar 

  43. He B-L, Dong B, Li H-L (2007) Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery. Electrochem Commun 9(3):425–430

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Achmad Subhan (LIPI) and Dr. Wahyu Bambang Widayatno (LIPI) for providing technical assistance and fruitful discussion.

Funding

This work was partially supported by the USAID through Sustainable Higher Education Research Alliances (SHERA) Project for Universitas Indonesia’s SMART CITY Center for Collaborative Research, partially funded by INSINAS grant No. 04/INS-2/PPK/E/E4/2017, INSINAS grant No. IRPK-148-2018, and the 2018 KIST School Partnership Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rudy Setiabudy or Chairul Hudaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pambudi, Y.D.S., Setiabudy, R., Yuwono, A.H. et al. Effects of annealing temperature on the electrochemical characteristics of ZnO microrods as anode materials of lithium-ion battery using chemical bath deposition. Ionics 25, 457–466 (2019). https://doi.org/10.1007/s11581-018-2723-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2723-z

Keywords

Navigation