Skip to main content

Advertisement

Log in

PAN-based carbon fiber@SnO2 for highly reversible structural lithium-ion battery anode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The carbon fiber (CF) is frequently preferred because it is considered as a multifunctional lightweight composite, where the CF is not only acted as one completely integrated part of the device with high-performance structural reinforcement, but also served as one of the battery electrode to storage energy. However, the limitation of electrochemical capacity of commercial CFs for the structural lithium-ion battery (SLIB) is an urgent issue should be solved. Therefore, in this work, a novel strategy to fabricate CF@SnO2 composite is developed by employing one-step tin tetrachloride solvothermal method. The performance of the CFs could be improved by growing the stannic oxide firmly on each CF to form a synergetic electrode. When tested as anode materials, a high reversible capacity of 510 mAh g−1 at a current density of 100 mAh g−1 is maintained without obvious decay up to 150 cycles (a huge increase as high as 637.5% than that of the pure CFs). Furthermore, our strategy reveals an attainable route, which could be as a promising way to make a sustainable anode for SLIBs and carbon-based multi-functional composite for other practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  2. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262

    Article  CAS  Google Scholar 

  3. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    Article  CAS  Google Scholar 

  4. Lou XW, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications**. Adv Mater 20(21):3987–4019

    Article  CAS  Google Scholar 

  5. Fan L, Zhang Y, Zhang Q et al (2016) Graphene aerogels with anchored sub-micrometer mulberry-like ZnO particles for high-rate and long-cycle anode materials in lithium ion batteries. Small 12(37):5208–5216

    Article  CAS  Google Scholar 

  6. Liu P, Sherman E, Jacobsen AJ (2009) Design and fabrication of multifunctional structural batteries. J Power Sources 189(1):646–650

    Article  CAS  Google Scholar 

  7. Jacques E, Lindbergh G, Zenkert D, Leijonmarck S, Kjell MH (2015) Piezo-electrochemical energy harvesting with lithium-intercalating carbon fibers. ACS Appl Mater Interfaces 7(25):13898–13904

    Article  CAS  Google Scholar 

  8. Kjell MH, Zavalis TG, Behm M, Lindbergh G (2013) Electrochemical characterization of lithium intercalation processes of PAN-based carbon fibers in a microelectrode system. J Electrochem Soc 160(9):A1473–A1481

    Article  CAS  Google Scholar 

  9. Jacques E, Kjell MH, Zenkert D, Lindbergh G (2014) The effect of lithium-intercalation on the mechanical properties of carbon fibres. Carbon 68:725–733

    Article  CAS  Google Scholar 

  10. Jacques E, Kjell MH, Zenkert D, Lindbergh G, Behm M, Willgert M (2012) Impact of electrochemical cycling on the tensile properties of carbon fibres for structural lithium-ion composite batteries. Compos Sci Technol 72(7):792–798

    Article  CAS  Google Scholar 

  11. Kjell MH, Jacques E, Zenkert D, Behm M, Lindbergh G (2011) PAN-based carbon fiber negative electrodes for structural lithium-ion batteries. J Electrochem Soc 158(12):A1455–A1460

    Article  CAS  Google Scholar 

  12. Fan L, Li B, Rooney DW et al (2015) In situ preparation of 3D graphene aerogels@ hierarchical Fe 3 O 4 nanoclusters as high rate and long cycle anode materials for lithium ion batteries. Chem Commun 51(9):1597–1600

    Article  CAS  Google Scholar 

  13. Fang W, Zhang N, Fan L et al (2016) Bi 2 O 3 nanoparticles encapsulated by three-dimensional porous nitrogen-doped graphene for high-rate lithium ion batteries. J Power Sources 333:30–36

    Article  CAS  Google Scholar 

  14. Park M, Wang G, Kang Y, Wexler D, Dou SX, Liu H (2007) Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew Chem 46(5):750–753

    Article  CAS  Google Scholar 

  15. Chen JS, Lou XW (2013) SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9(11):1877–1893

    Article  CAS  Google Scholar 

  16. Wang X, Zhou X, Yao K, Zhang J, Liu Z (2011) A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 49(1):133–139

    Article  CAS  Google Scholar 

  17. Huang G, Zhang F, Du X, Qin Y, Yin D, Wang L (2015) Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9(2):1592–1599

    Article  CAS  Google Scholar 

  18. Zhang Y, Hu Z, Liang Y, Yang Y, An N, Li Z et al (2015) Growth of 3D SnO 2 nanosheets on carbon cloth as a binder-free electrode for supercapacitors. J Mater Chem A 3(29):15057–15067

    Article  CAS  Google Scholar 

  19. Cong HP, Xin S, Yu SH (2015) Flexible nitrogen-doped graphene/SnO 2 foams promise kinetically stable lithium storage. Nano Energy 13:482–490

    Article  CAS  Google Scholar 

  20. Yi Z, Han Q, Zan P, Cheng Y, Wu Y, Wang L (2016) Facile fabrication of SnO2@TiO2 core–shell structures as anode materials for lithium-ion batteries. J Mater Chem 4(33):12850–12857

    Article  CAS  Google Scholar 

  21. Yao J, Shen X, Wang B, Liu H, Wang G (2009) In situ chemical synthesis of SnO2―graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun 11(10):1849–1852

    Article  CAS  Google Scholar 

  22. Eom W, Kim A, Park H, Kim H, Han TH (2016) Graphene-mimicking 2D porous Co3O4 nanofoils for lithium battery applications. Adv Funct Mater 26(42):7605–7613

    Article  CAS  Google Scholar 

  23. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2015114), the Creative Research Groups of the National Natural Science Foundation of China (Grant No. 21521092), the National Science Foundation of China (Project No. 51475207), the China Postdoctoral Science Foundation (Grant No. 2015m580253), and the Postdoctoral Foundation of Jilin Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qigang Han or Limin Wang.

Electronic supplementary material

ESM 1

(DOCX 386 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Wang, F., Wang, Z. et al. PAN-based carbon fiber@SnO2 for highly reversible structural lithium-ion battery anode. Ionics 24, 1049–1055 (2018). https://doi.org/10.1007/s11581-017-2261-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2261-0

Keywords

Navigation