Skip to main content
Log in

Graphene oxide doped poly(vinylidene fluoride-co-hexafluoropropylene) gel electrolyte for lithium ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Gel poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymer electrolytes doped with graphene oxide (GO) (GO/PVDF-HFP) were designed and fabricated through a phrase inversion method and followed by LiPF6 solution uptake. It was demonstrated that the as-prepared GO/PVDF-HFP polymer electrolytes have uniform porous morphologies, and their crystalline state, thermal stability, interfacial resistance, and electrolyte uptake and retention capabilities can be tuned by varying the GO contents. Further, it was found that the GO can prominently enhance the ionic conductivity of the GO/PVDF-HFP polymer electrolyte. The electrochemical property measurements show that the lithium ion batteries using as-prepared GO/PVDF-HFP polymer electrolytes afford admirable charge/discharge rate and cycle stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Song X, Ding W, Cheng B, Xing J (2015) Electrospun poly(vinylidene-fluoride)/POSS nanofiber membrane-based polymer electrolytes for lithium ion batteries. Polym Compos. doi:10.1002/pc.23621

    Google Scholar 

  2. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42

    Article  Google Scholar 

  3. Moreno M, Quijada R, Ana MAS, Benavente E, Gomez-Romero P, González G (2011) Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte. Electrochim Acta 58:112–118

    Article  CAS  Google Scholar 

  4. Chen YT, Chuang YC, Su JH, Yu HC, Chen-Yang YW (2011) High discharge capacity solid composite polymer electrolyte lithium battery. J Power Sources 196:2802–2809

    Article  CAS  Google Scholar 

  5. Lavall RL, Ferrari S, Tomasi C, Marzantowicz M, Quartarone E, Fagnoni M, Mustarelli P, Saladino ML (2012) MCM-41 silica effect on gel polymer electrolytes based on thermoplastic polyurethane. Electrochim Acta 60:359–365

    Article  CAS  Google Scholar 

  6. Idris NH, Rahman MM, Wang JZ, Liu HK (2012) Microporous gel polymer electrolytes for lithium rechargeable battery application. J Power Sources 201:294–300

    Article  CAS  Google Scholar 

  7. Noto VD, Lavina S, Giffin GA, Negro E, Scrosati B (2011) Polymer electrolytes: present, past and future. Electrochim Acta 57:4–13

    Article  Google Scholar 

  8. Chung YS, Yoo SH, Kim CK (2009) Enhancement of meltdown temperature of the polyethylene lithium-ion battery separator via surface coating with polymers having high thermal resistance. Ind Eng Chem Res 48:4346–4351

    Article  CAS  Google Scholar 

  9. Venugopal G, Moore J, Howard J, Pendalwar S (1999) Characterization of microporous separators for lithium-ion batteries. J Power Sources 77:34–41

    Article  CAS  Google Scholar 

  10. Kang Y, Kim HJ, Kim E, Oh B, Cho JH (2001) Photocured PEO-based solid polymer electrolyte and its application to lithium-polymer batteries. J Power Sources 92:255–259

    Article  CAS  Google Scholar 

  11. Raghavan P, Manuel J, Zhao X, Kim DS, Ahn JH, Nah C (2011) Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. J Power Sources 196:6742–6749

    Article  CAS  Google Scholar 

  12. Rao MM, Liu JS, Li WS, Liang Y, Zhou DY (2008) Preparation and performance analysis of PE-supported P(AN-co-MMA) gel polymer electrolyte for lithium ion battery application. J Membr Sci 322:314–319

    Article  CAS  Google Scholar 

  13. Hakkak F, Rafizadeh M, Sarabi AA, Yousefi M (2015) Optimization of ionic conductivity of electrospun polyacrylonitrile/poly(vinylidene fluoride) (PAN/PVdF) electrolyte using the response surface method (RSM). Ionics 21:1945–1957

    Article  CAS  Google Scholar 

  14. Zhang J, Sun B, Huang X, Chen S, Wang G (2014) Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Sci Rep 4:6007

    Article  CAS  Google Scholar 

  15. Costa CM, Silva MM, Lanceros-Méndez S (2013) Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Adv 3:11404–11417

    Article  CAS  Google Scholar 

  16. Saikia D, Wu HY, Pan YC, Lin CP, Huang KP, Chen KN, Fey GTK, Kao HM (2011) Highly conductive and electrochemically stable plasticized blend polymer electrolytes based on PVdF-HFP and triblock copolymer PPG-PEG-PPG diamine for li-ion batteries. J Power Sources 196:2826–2834

    Article  CAS  Google Scholar 

  17. Zalewska A, Walkowiak M, Niedzicki L, Jesionowski T, Langwald N (2010) Study of the interfacial stability of PVdF/HFP gel electrolytes with sub-micro- and nano-sized surface-modified silicas. Electrochim Acta 55:1308–1313

    Article  CAS  Google Scholar 

  18. Raghavan P, Choi JW, Ahn JH, Cheruvally G, Chauhan G, Ahn HJ, Nah C (2008) Novel electrospun poly(vinylidene fluoride-co-hexafluoropropylene)–in situ SiO2 composite membrane-based polymer electrolyte for lithium batteries. J Power Sources 184:437–443

    Article  CAS  Google Scholar 

  19. Li Z, Chen T, Liao Y (2015) Performance enforcement of gel polymer electrolyte for lithium ion battery with co-doping silicon dioxide and zirconium dioxide nanoparticles. Ionics 21:2763–2770

    Article  CAS  Google Scholar 

  20. Raghavan P, Zhao X, Manuel J, Chauhan G, Ahn JH, Ryu HS, Ahn HJ, Kim KW, Nah C (2010) Electrochemical performance of electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid. Electrochim Acta 55:1347–1354

    Article  CAS  Google Scholar 

  21. Wang SH, Lin YY, Teng CY, Chen YM, Kuo PL, Lee YL, Hsieh CT, Teng H (2016) Immobilization of anions on polymer matrices for gel electrolytes with high conductivity and stability in lithium ion batteries. ACS Appl Mat Interfaces 8:14776–14787

    Article  CAS  Google Scholar 

  22. Pandey GP, Agrawal RC, Hashmi SA (2009) Magnesium ion-conducting gel polymer electrolytes dispersed with nanosized magnesium oxide. J Power Sources 190:563–572

    Article  CAS  Google Scholar 

  23. Subramania A, Sundaram NTK, Priya ARS, Kumar GV (2007) Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance li-ion battery. J Membr Sci 294:8–15

    Article  CAS  Google Scholar 

  24. Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via l-ascorbic acid. Chem Commun 46:1112–1114

    Article  CAS  Google Scholar 

  25. Liu P, Yang H, Zhang X, Jiang M, Duan Y, Zhang J (2016) Controllable lateral contraction and mechanical performance of chemically reduced graphene oxide paper. Carbon 107:46–55

    Article  Google Scholar 

  26. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  27. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519

    Article  CAS  Google Scholar 

  28. Tiwari JN, Tiwari RN, Singh G, Kim KS (2013) Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2:553–578

    Article  CAS  Google Scholar 

  29. Wang JTW, Ball JM, Barea EM, Abate A, Alexander-Webber JA, Huang J, Saliba M, Mora-Sero IN, Bisquert J, Snaith HJ, Nicholas RJ (2013) Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett 14:724–730

    Article  Google Scholar 

  30. Li B, Klekachev AV, Cantoro M, Huyghebaert C, Stesmans A, Asselberghs I, Gendt SD, Feyter SD (2013) Toward tunable doping in graphene FETs by molecular self-assembled monolayers. Nanoscale 5:9640–9644

    Article  CAS  Google Scholar 

  31. Wang Z, Hu G, Liu J, Liu W, Zhang H, Wang B (2015) Coordinated assembly of a new 3d mesoporous Fe3O4@Cu2O-graphene oxide framework as a highly efficient and reusable catalyst for the synthesis of quinoxalines. Chem Commun 51:5069–5072

    Article  CAS  Google Scholar 

  32. Jung HS, Kong WH, Sung DK, Lee MY, Beack SE, Keum DH, Kim KS, Yun SH, Hahn SK (2014) Nanographene oxide-hyaluronic acid conjugate for photothermal ablation therapy of skin cancer. ACS Nano 8:260–268

    Article  CAS  Google Scholar 

  33. Choi Y, Zhang K, Chung KY, Wang DH, Park JH (2016) PVdF-HFP/exfoliated graphene oxide nanosheet hybrid separators for thermally stable Li-ion batteries. RSC Adv 6:80706–80711

    Article  CAS  Google Scholar 

  34. Tong WS, Zhang YH, Yu L, Luan XL, An Q, Zhang Q, Lv FZ, Chu PK, Shen B, Zhang ZL (2014) Novel method for the fabrication of flexible film with oriented arrays of graphene in poly(vinylidenefluoride-cohexafluoropropylene) with low dielectric loss. J Phys Chem C 118:10567–10573

    Article  CAS  Google Scholar 

  35. Tong WS, Zhang YH, Zhang Q, Luan XL, Duan Y, Pan SF, Lv FZ, An Q (2015) Achieving significantly enhanced dielectric performance of reduced graphene oxide/polymer composite by covalent modification of graphene oxide surface. Carbon 94:590–598

    Article  CAS  Google Scholar 

  36. Kumar P, Yu S, Shahzad F, Hong SM, Kim YH, Koo CM (2016) Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon 101:120–128

    Article  CAS  Google Scholar 

  37. Zhou X, Zhang J, Wu H, Yang H, Zhang J, Guo S (2011) Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene. J Phys Chem C 115:11957–11961

    Article  CAS  Google Scholar 

  38. Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564

    Article  CAS  Google Scholar 

  39. Prasanth R, Shubha N, Hng HH, Srinivasan M (2013) Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries. Eur Polym J 49:307–318

    Article  CAS  Google Scholar 

  40. Stephan AM, Nahm KS, Kulandainathan MA, Ravi G, Wilson J (2006) Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based composite electrolytes for lithium batteries. Eur Polym J 42:1728–1734

    Article  CAS  Google Scholar 

  41. Hong J, Liu C, Deng X, Jiang T, Gan L, Huang J (2016) Enhanced tribological properties in core-shell structured SiO2@GO hybrid fillers for epoxy nanocomposites. RSC Adv 6:89221–89230

    Article  CAS  Google Scholar 

  42. Wind JD, Sirard SM, Pual DR, Green PF, Johnston KP, Koros WJ (2003) Relaxation dynamics of CO2 diffusion, sorption, and polymer swelling for plasticized polyimide membranes. Macromolecules 36:6442–6448

    Article  CAS  Google Scholar 

  43. Li Z, Su G, Wang X, Gao D (2005) Micro-porous P(VDF-HFP)-based polymer electrolyte filled with Al2O3 nanoparticles. Solid State Ionics 176:1903–1908

    Article  CAS  Google Scholar 

  44. Xiao W, Li X, Wang Z, Guo H, Wang J, Huang S, Gan L (2012) Physicochemical properties of a novel composite polymer electrolyte doped with vinyltrimethoxylsilane-modified nano-La2O3. J Rare Earths 30:1034–1040

    Article  CAS  Google Scholar 

  45. Deka M, Kumar A (2011) Electrical and electrochemical studies of poly(vinylidene fluoride)–clay nanocomposite gel polymer electrolytes for Li-ion batteries. J Power Sources 196:1358–1364

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National “973 Program” of China (No. 2014CB260411 and 2015CB931801), the National Science foundation of China (No. 11374205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenzhuo Shen or Shouwu Guo.

Electronic supplementary material

ESM 1

(DOC 1405 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Shen, W., Lu, J. et al. Graphene oxide doped poly(vinylidene fluoride-co-hexafluoropropylene) gel electrolyte for lithium ion battery. Ionics 23, 2045–2053 (2017). https://doi.org/10.1007/s11581-017-2037-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2037-6

Keywords

Navigation