Skip to main content
Log in

Synergistic effect of magnesium and fluorine doping on the electrochemical performance of lithium-manganese rich (LMR)-based Ni-Mn-Co-oxide (NMC) cathodes for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Mg-doped-LMR-NMC (Li1.2Ni0.15-xMgxMn0.55Co0.1 O2) is synthesized by combustion method followed by fluorine doping by solid-state synthesis. In this approach, we substituted the Ni2+ by Mg2+ in varying mole percentages (x = 0.02, 0.05, 0.08) and partly oxygen by fluorine (LiF: LMR-NMC = 1:50 wt%). The synergistic effect of both magnesium and fluorine substitution on electrochemical performance of LMR-NMC is studied by electrochemical impedance spectroscopy and galvanostatic-charge-discharge cycling. Mg-F-doped LMR-NMC (Mg 0.02 mol) composite cathodes shows excellent discharge capacity of ~300 mAh g−1 at C/20 rate whereas pristine LMR-NMC shows the initial capacity around 250 mAh g−1 in the voltage range between 2.5 and 4.7 V. Mg-F-doped LMR-NMC shows lesser Ohmic and charge transfer resistance, cycles well, and delivers a stable high capacity of ~280 mAh g−1 at C/10 rate. The voltage decay which is the major issue of LMR-NMC is minimized in Mg-F-doped LMR-NMC compared to pristine LMR-NMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  3. Wang C, John Appleby A, Little FE (2001) Charge–discharge stability of graphite anodes for lithium-ion batteries. J Electroanal Chem 497:33–46

    Article  CAS  Google Scholar 

  4. Zhao L, Hu Y-S, Li H, Wang Z, Chen L (2011) Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv Mater 23:1385–1388

    Article  CAS  Google Scholar 

  5. Yabuuchi N, Ohzuku T (2003) Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sources 119-121:171–174

    Article  CAS  Google Scholar 

  6. Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125

    Article  CAS  Google Scholar 

  7. Martha SK, Nanda J, Veith GM, Dudney NJ (2012) Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J Power Sources 199:220–226

    Article  CAS  Google Scholar 

  8. Mohanty D, Sefat AS, Kalnaus S, Li J, Meisner RA, Payzant EA, Abraham DP, Wood DL, Daniel C (2013) Investigating phase transformation in theLi1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. Journal of Material Chemistry A 1:6249–6261

    Article  CAS  Google Scholar 

  9. Martha SK, Nanda J, Kim Y, Unocic RR, Pannala S, Dudney NJ (2013) Solid electrolyte coated high voltage layered–layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2. Journal of Material Chemistry A 1:5587–5595

    Article  CAS  Google Scholar 

  10. Martha SK, Nanda J, Veith GM, Dudney NJ (2012) Surface studies of high voltage lithium rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J Power Sources 216:179–186

    Article  CAS  Google Scholar 

  11. Bettge M, Li Y, Gallagher K, Zhu Y, Wu Q, Lu W, Bloom I, Abraham DP (2013) Voltage fade of layered oxides: its measurement and impact on energy density. J Electrochem Soc 160(11):A2046–A2055

    Article  CAS  Google Scholar 

  12. Nayak PK, Grinblat J, Levi E, Penki Ti R, Levi M, Sun Y-K, Markovsky B, Aurbach D (2016) Remarkably improved electrochemical performance of Li- and Mn-rich cathodes upon substitution of Mn with Ni. ACS Appl Mater Interfaces. doi:10.1021/acsami.6b07959

    Google Scholar 

  13. Armstrong AR, Holzapfel M, Novàk P, Johnson CS, Kang S-H, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li [Ni0.2Li0.2Mn0.6] O2. J Am Chem Soc 128:8694–8698

    Article  CAS  Google Scholar 

  14. Liu J, Manthiram A (2010) Functional surface modifications of a high capacity layered Li [Li0.2Mn0.54Ni0.13Co0.13] O2cathode. Journal of Material Chemistry 20:3961–3967

    Article  CAS  Google Scholar 

  15. Chikkannanavar SB, Bernardi DM, Liu L (2014) A review of blended cathode materials for use in Li-ion batteries. J Power Sources 248:91–100

    Article  CAS  Google Scholar 

  16. Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2006) Surface modifications of electrode materials for lithium ion batteries. Solid State Sci 8:113–128

    Article  CAS  Google Scholar 

  17. Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2006) Cathode materials modified by surface coating for lithium ion batteries. Electrochim Acta 51:3872–3883

    Article  CAS  Google Scholar 

  18. Gallagher KG, Kang S-H, Park SU, Han SY (2011) xLi2MnO3·(1−x)LiMO2 blended with LiFePO4 to achieve high energy density and pulse power capability. J Power Sources 196:9702–9707

    Article  CAS  Google Scholar 

  19. Park SH, Sun Y-K (2003) Synthesis and electrochemical properties of layered Li [Li0.15Ni(0.275−x/2)Al x Mn(0.575− x /2)] O2 materials prepared by sol–gel method. J Power Sources 119–121:161–165

    Article  Google Scholar 

  20. Wang YX, Shang KH, He W, Ai XP, Cao YL, Yang HX (2015) Magnesium-doped Li1.2 [Co0.13Ni0.13Mn0.54] O2 for lithium-ion battery cathode with enhanced cycling stability and rate capability. ACS Applied Materials Interfaces 7:13014–13021

    Article  CAS  Google Scholar 

  21. Sun YK, Jeon YS, Lee HJ (2000) Overcoming Jahn-Teller distortion for spinel Mn phase. Electrochem Solid-State Lett 3:7

    Article  CAS  Google Scholar 

  22. Robert R, Villevieille C, Novák P (2014) Enhancement of the high potential specific charge in layered electrode materials for lithium-ion batteries. Journal of Material Chemistry A 2:8589–8598

    Article  CAS  Google Scholar 

  23. Kim G-H, Kim J-H, Myung S-T, Yoon CS, Sun Y-K (2005) Improvement of high-voltage cycling behavior of surface-modified Li [Ni1/3Co1/3Mn1/3] O2 cathodes by fluorine substitution for Li-ion batteries. J Electrochem Soc 152:A1707–A1713

    Article  CAS  Google Scholar 

  24. Shin HS, Park SH, Yoon CS, Sun YK (2005) Effect of fluorine on the electrochemical properties of layered LiNi0.43Co0.22Mn0.35O2 cathode materials via a carbonate process. Electrochem Solid-State Lett 8:A559

    Article  CAS  Google Scholar 

  25. Woo SU, Park BC, Yoon CS, Myung ST, Prakash J, Sun YK (2007) Improvement of electrochemical performances of LiNi0.8Co0.1Mn0.1O2 cathode materials by fluorine substitution. J Electrochem Soc 154:A649

    Article  CAS  Google Scholar 

  26. Shin HS, Shin D, Sun YK (2006) Improvement of electrochemical properties of Li [Ni0.4Co0.2Mn(0.4-x)Mgx] O2-yFy cathode materials at high voltage region. Electrochim Acta 52:1477

    Article  CAS  Google Scholar 

  27. Kim G-H, Myung S-T, Bang HJ, Prakash J, Sun Y-K (2004) Synthesis and electrochemical properties of Li[Ni1/3Co1/3Mn(1/3-x)Mgx]O2-yFy via coprecipitation. Electrochem Solid-State Lett 7(12):A477–A480

    Article  CAS  Google Scholar 

  28. Axelbaum RL, Lengyel M (2015) Doped lithium-rich layered composite cathode materials. United States Patent, US2015/0270545A1

  29. Luo W, Zhou F, Zhao X, Lu Z, Li X, Dahn JR (2010) Synthesis, characterization, and thermal stability o LiNi1/3Mn1/3Co1/3−z Mg z O2,LiNi1/3−z Mn1/3Co1/3Mg z O2, and LiNi1/3Mn1/3−z Co1/3Mg z O2. Chem Mater 22:1164–1172

    Article  CAS  Google Scholar 

  30. Mohanty D, Dahlberg K, King DM, David LA, Sefat AS, Wood DL, Daniel C, Dhar S, Mahajan V, Lee M, Albano F (2016) Modification of Ni-rich FCG NMC and NCA cathodes by atomic layer deposition: preventing surface phase transitions for high-voltage lithium-ion batteries. Nature Scientific Reports 6:26532. doi:10.1038/srep26532

    Article  CAS  Google Scholar 

  31. Liu W, Pilgun O, Liu X, Lee M-J, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem 54:4440–4457

Download references

Acknowledgments

SKK acknowledges the University Grant Commision, SG acknowledges MHRD for fellowship, and SKM acknowledges DST-SERB (Grant no. SB/FT/CS-147/2014) for the financial support for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra K. Martha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna Kumar, S., Ghosh, S. & Martha, S.K. Synergistic effect of magnesium and fluorine doping on the electrochemical performance of lithium-manganese rich (LMR)-based Ni-Mn-Co-oxide (NMC) cathodes for lithium-ion batteries. Ionics 23, 1655–1662 (2017). https://doi.org/10.1007/s11581-017-2018-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2018-9

Keywords

Navigation