Skip to main content
Log in

Effect of calcination conditions on lithium conductivity in Li1.3Ti1.7Al0.3(PO4)3 prepared by sol-gel route

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In order to study the influence of powder calcination temperature on lithium ion conductivity, synthesized Li1.3Ti1.7Al0.3(PO4)3 (LATP) was calcined at temperatures between 750 and 900 °C. The shape and size of the particles were characterized employing scanning electron microscopy (SEM), and specific surface area of the obtained powder was measured. The crystallinity grade of different heat-treated powders was calculated from XRD spectra. Posteriorly, all powders were sintered at 1100 °C employing field-assisted sintering (SPS), and the electrical properties were correlated to the calcination conditions. The highest ionic conductivity was observed for samples made out of powders calcined at 900 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hagman L-O, Kierkegaard P, Karvonen P, Virtanen AI, Paasivirta J (1968) The crystal structure of NaM2IV(PO4)3; MeIV = Ge, Ti, Zr. Acta Chem Scand 22:1822–1832

    Article  CAS  Google Scholar 

  2. Ivanov-Schitz A, Bykov AB (1997) Ionic conductivity of the NaZr2(PO4)3 single crystals. Solid State Ionics 100(1–2):153–155

    Article  CAS  Google Scholar 

  3. Fergus JW (2012) Ion transport in sodium ion conducting solid electrolytes. Solid State Ionics 227:102–112

    Article  CAS  Google Scholar 

  4. Delmas C, Nadiri A, Soubeyroux JL (1988) The nasicon-type titanium phosphates Ati2(PO4)3 (A=Li, Na) as electrode materials. Solid State Ionics 28–30(2):419–423

    Article  Google Scholar 

  5. Fergus JW (Aug. 2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195(15):4554–4569

    Article  CAS  Google Scholar 

  6. Alamo J (1993) Chemistry and properties of solids with the [NZP] skeleton. Solid State Ionics 63–65:547–561

    Article  Google Scholar 

  7. Anantharamulu N, Koteswara Rao K, Rambabu G, Vijaya Kumar B, Radha V, Vithal M (2011) A wide-ranging review on Nasicon type materials. J Mater Sci 46(9):2821–2837

    Article  CAS  Google Scholar 

  8. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1990) Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137(4):1023–1027

    Article  CAS  Google Scholar 

  9. Aono H (1989) Ionic conductivity of the lithium titanium phosphate (Li[sub 1 + X]M[sub X]Ti[sub 2 − X](PO[sub 4])[sub 3], M = Al, Sc, Y, and La) systems. J Electrochem Soc 136(2):590

    Article  CAS  Google Scholar 

  10. Aono H, Suginoto E (1996) Ionic conductivity and sinterability of NASICON-type ceramics: the systems NaM2(PO4)3+yNa2o (M = Ge, Ti, Hf, and Zr). J Am Ceram Soc 79(10):2786–2788

    Article  CAS  Google Scholar 

  11. Thokchom JS, Kumar B (2010) The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass–ceramic. J Power Sources 195(9):2870–2876

    Article  CAS  Google Scholar 

  12. Scheetz BE, Agrawal DK, Breval E, Roy R (1994) Sodium zirconium phosphate (NZP) as a host structure for nuclear waste immobilization: a review. Waste Manag 14(6):489–505

    Article  CAS  Google Scholar 

  13. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi GY (1989) Ionic-conductivity of the lithium titanium phosphate (LI1 + XALXTI2-X(PO4)3), (LI1 + XSCXTI2-X(PO4)3), (LI1 + XYXTI2-X(PO4)3), (LI1 + XLAXTI2-X(PO4)3 systems. J Electrochem Soc 136(2): 590–591

  14. Cretin M, Fabry P (1999) Comparative study of lithium ion conductors in the system Li1+xAlxA2−xIV (PO4)3 with AIV=Ti or Ge and 0≤x≤0·7 for use as Li+ sensitive membranes. J Eur Ceram Soc 19(16):2931–2940

    Article  CAS  Google Scholar 

  15. Cretin M, Fabry P, Abello L (1995) Study of Li1+xAlxTi2−x(PO4)3 for Li+ potentiometric sensors. J Eur Ceram Soc 15(11):1149–1156

    Article  CAS  Google Scholar 

  16. Xu X, Wen Z, Wu J, Yang X (2007) Preparation and electrical properties of NASICON-type structured Li1.4Al0.4Ti1.6(PO4)3 glass-ceramics by the citric acid-assisted sol–gel method. Solid State Ionics 178(1–2):29–34

    Article  CAS  Google Scholar 

  17. Kotobuki M, Koishi M (2013) Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol–gel route using various Al sources. Ceram Int 39(4):4645–4649

    Article  CAS  Google Scholar 

  18. Kunshina GB, Gromov OG, Lokshin EP, Kalinnikov VT (2014) Sol-gel synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Russ J Inorg Chem 59(5):424–430

    Article  CAS  Google Scholar 

  19. Fu J (1997) Superionic conductivity of glass-ceramics in the system Li2O- Al2O3-TiO2-P2O5. Solid State Ionics 96(3–4):195–200

    Article  CAS  Google Scholar 

  20. Narváez-Semanate JL, Rodrigues ACM (2010) Microstructure and ionic conductivity of Li1+xAlxTi2−x(PO4)3 NASICON glass-ceramics. Solid State Ionics 181(25–26):1197–1204

    Article  Google Scholar 

  21. Huang L, Wen Z, Wu M, Wu X, Liu Y, Wang X (2011) Electrochemical properties of Li1.4Al0.4Ti1.6(PO4)3 synthesized by a co-precipitation method. J Power Sources 196(16):6943–6946

    Article  CAS  Google Scholar 

  22. Kotobuki M, Koishi M, Kato Y (Oct. 2013) Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method. Ionics (Kiel) 19(12):1945–1948

    Article  CAS  Google Scholar 

  23. Duluard S, Paillassa A, Puech L, Vinatier P, Turq V, Rozier P, Lenormand P, Taberna P-L, Simon P, Ansart F (2013) Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry. J Eur Ceram Soc 33(6):1145–1153

    Article  CAS  Google Scholar 

  24. Xu X, Wen Z, Yang X, Zhang J, Gu Z (Oct. 2006) High lithium ion conductivity glass-ceramics in Li2O–Al2O3–TiO2–P2O5 from nanoscaled glassy powders by mechanical milling. Solid State Ionics 177(26–32):2611–2615

    Article  CAS  Google Scholar 

  25. Morimoto H, Hirukawa M, Matsumoto A, Kurahayashi T, Ito N, Tobishima S (Oct. 2014) Lithium ion conductivities of NASICON-type Li1+xAlxTi2-x(PO4)3 solid electrolytes prepared from amorphous powder using a mechanochemical method. Electrochemistry 82(10):870–874

    Article  CAS  Google Scholar 

  26. Hupfer T, Bucharsky EC, Schell KG, Senyshyn A, Monchak M, Hoffmann MJ, Ehrenberg H (2016) Evolution of microstructure and its relation to ionic conductivity. Solid State Ionics 288:235–239

    Article  CAS  Google Scholar 

  27. Bucharsky EC, Hoffmann MJ, Schell KG (2013) Method for producing Li-Ion conductive lithium aluminium titanium phosphates and use thereof as a solid-state-electrolyte. Patent WO 2013/156116 A1

  28. Bucharsky EC, Schell KG, Hintennach A, Hoffmann MJ (2015) Preparation and characterization of sol–gel derived high lithium ion conductive NZP-type ceramics Li1+x AlxTi2−x(PO4)3. Solid State Ionics 274:77–82

    Article  CAS  Google Scholar 

  29. Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 98–100

  30. Soman S, Iwai Y, Kawamura J, Kulkarni A (2011) Crystalline phase content and ionic conductivity correlation in LATP glass–ceramic. J Solid State Electrochem 16(5):1761–1766

    Article  Google Scholar 

  31. Lee SS, Lee J, Jung Y-G, Kim J-K, Kim Y (2016) Effect of sol-gel process parameters on the properties of a Li1.3Ti1.7Al0.3(PO4)3 solid electrolyte for Li-ion batteries. J Korean Phys Soc 68(1):28–34

    Article  CAS  Google Scholar 

  32. Gao Z, Ma Y, Zhang X, Wang D, Yang H, Wen H, Watanabe K (2008) Influence of sintering temperature on the superconducting properties of Zn-stearate-doped MgB 2 tapes. Supercond Sci Technol 21(1):15016

    Article  Google Scholar 

  33. Hupfer T, Bucharsky EC, Schell KG, Senyshyn A, Monchak M, Hoffmann MJ, Ehrenberg H (2016) Evolution of microstructure and its relation to ionic conductivity in Li1 + xAlxTi2 - x(PO4)3. Solid State Ion 288:235–239. doi:10.1016/j.ssi.2016.01.036

Download references

Acknowledgement

The authors gratefully acknowledge financial support provided by the Deutsche Forschungsgemeinschaft (DFG contract number HO1165/18-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Schell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schell, K.G., Bucharsky, E.C., Lemke, F. et al. Effect of calcination conditions on lithium conductivity in Li1.3Ti1.7Al0.3(PO4)3 prepared by sol-gel route. Ionics 23, 821–827 (2017). https://doi.org/10.1007/s11581-016-1883-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1883-y

Keywords

Navigation