Skip to main content
Log in

Facile synthesis and characterization of high-performance NiMoO4 · xH2O nanorods electrode material for supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

One-dimensional NiMoO4 · xH2O nanorods were synthesized by a facile template-free hydrothermal method as a potential electrode material for supercapacitors. The influences of reaction temperature, reaction time, and nickel source on the properties of resultant samples were investigated. Electrochemical data reveal that the as-synthesized one-dimensional NiMoO4 · xH2O nanorod superstructures can deliver a remarkable specific capacitance (SC) of 1131 F g−1 at a current density of 1 A g−1 and remain as high as 914 F g−1 at 10 A g−1 in a 6 M KOH aqueous solution. Moreover, there is only 6.2 % loss of the maximum SC after 1000 continuous charge–discharge cycles at the high current density of 10 A g−1. Such outstanding electrochemical performance may be owing to the unique one-dimensional hierarchical structures, which can facilitate the electrolyte ions and electrons to easily contact the NiMoO4 nanorod building blocks and then allow for sufficient faradaic reactions to take place, even at high current densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  2. Liu TT, Shao GJ, Ji MT, Ma ZP (2014) Composites of olive-like manganese oxalate on graphene sheets for supercapacitor electrodes. Ionics 20:145–149

    Article  CAS  Google Scholar 

  3. Wei WF, Cui XW, Chen WX, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  4. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  5. Simon P, Gogotsi Y (2013) Capacitive energy storage in nanostructured carbon–electrolyte systems. Acc Chem Res 46:1094–1103

    Article  CAS  Google Scholar 

  6. Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903

    Article  CAS  Google Scholar 

  7. Kong LB, Lang JW, Liu M, Luo YC, Kang L (2009) Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors. J Power Sources 194:1194–1201

    Article  CAS  Google Scholar 

  8. Yan XY, Tong XL, Wang J, Gong GC, Zhang MG, Liang LP (2014) Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor application. J Alloys Compd 25:184–189

    Article  Google Scholar 

  9. Jiang H, Zhao T, Li CZ, Ma J (2011) Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J Mater Chem 21:3818–3823

    Article  CAS  Google Scholar 

  10. Shao MF, Ning FY, Zhao YF, Zhao JW, Wei M, Evans DG, Duan X (2012) Core-shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors. Chem Mater 24:1192–1197

    Article  CAS  Google Scholar 

  11. Liu JP, Jiang J, Bosman M, Fan HJ (2012) Three-dimensional tubular arrays of MnO2-NiO nanoflakes with high areal pseudocapacitance. J Mater Chem 22:2419–2426

    Article  CAS  Google Scholar 

  12. Hu CC, Chen WC, Chang KH (2004) How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J Electrochem Soc 151:A281–A290

    Article  CAS  Google Scholar 

  13. Bae J, Song MK, Park YJ, Kim JM, Liu ML, Wang ZL (2011) Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew Chem Int Ed 50:1683–1687

    Article  CAS  Google Scholar 

  14. Huang JS, Sumpter BG, Meunier V (2008) Theoretical model for nanoporous carbon supercapacitors. Angew Chem Int Ed 47:520–524

    Article  CAS  Google Scholar 

  15. Ding SJ, Zhu T, Chen JS, Wang ZY, Yuan CL, Lou XW (2011) Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance. J Mater Chem 21:6602–6606

    Article  CAS  Google Scholar 

  16. Wang HL, Casalongue HS, Liang YY, Dai HJ (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472–7477

    Article  CAS  Google Scholar 

  17. Li M, Xu SH, Zhu YP, Yang PY, Wang LW, Chu PK (2014) Heterostructured Ni(OH)2-Co(OH)2 composites on 3D ordered Ni-Co nanoparticles fabricated on microchannel plates for advanced miniature supercapacitor. J Alloys Compd 589:364–371

    Article  CAS  Google Scholar 

  18. Srivastava M, Uddin ME, Singh J, Kim NH, Lee JH (2014) Preparation and characterization of self-assembled layer by layer NiCo2O4–reduced graphene oxide nanocomposite with improved electrocatalytic properties. J Alloys Compd 590:266–276

    Article  CAS  Google Scholar 

  19. Zhang GH, Wang TH, Yu XZ, Zhang HN, Duan HG, Lu BG (2013) Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy 2:586–594

    Article  CAS  Google Scholar 

  20. Huang L, Chen DC, Ding Y, Wang ZL, Zeng ZZ, Liu ML (2013) Hybrid composite Ni(OH)2@NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors. ACS Appl Mater Interfaces 5:11159–11162

    Article  CAS  Google Scholar 

  21. Guo D, Zhang P, Zhang HM, Yu XZ, Zhu QH, Wang TH (2013) NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors. J Mater Chem A 1:9024–9027

    Article  CAS  Google Scholar 

  22. Cherian CT, Reddy MV, Haur SC, Chowdari BVR (2013) Interconnected network of CoMoO4 submicrometer particles as high capacity anode material for lithium ion batteries. ACS Appl Mater Interfaces 5:918–923

    Article  CAS  Google Scholar 

  23. Mai LQ, Yang F, Zhao YL, Xu X, Xu L, Luo YZ (2011) Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:1387/1–1387/5

    Article  CAS  Google Scholar 

  24. Brito JL, Barbosa AL (1997) Effect of phase composition of the oxidic precursor on the HDS activity of the sulfided molybdates of Fe(II), Co(II), and Ni(II). J Catal 171:467–475

    Article  CAS  Google Scholar 

  25. Peng SJ, Li LL, Wu HB, Madhavi S, Lou XW (2015) Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv Energy Mater 5:1401172

    Google Scholar 

  26. Xiao W, Chen SJ, Li MC, Xu R, Lou XW (2010) Synthesis, characterization, and lithium storage capability of AMoO4 (a = Ni, Co) nanorods. Chem Mater 22:746–754

    Article  CAS  Google Scholar 

  27. Senthilkumar B, Sankar KV, Selvan RK, Danielle M, Manickam M (2013) Nano α-NiMoO4 as a new electrode for electrochemical supercapacitors. RSC Adv 3:352–357

    Article  CAS  Google Scholar 

  28. Liao MX, Liu YF, Hu ZH, Yu Q (2013) Novel morphologic of flower-like hierarchical microspheres as electrode material for electrochemical capacitors. J Alloys Compd 562:106–110

    Article  CAS  Google Scholar 

  29. Du DM, Hu ZH, Liu YF, Deng YH, Liu JM (2015) Preparation and characterization of flower-like microspheres of nano-NiO as electrode material for supercapacitor. J Alloys Compd 589:82–87

    Article  Google Scholar 

  30. Xia XH, Tu JP, Zhang YQ, Mai YJ, Wang XL, Gu CD, Zhao XB (2012) Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Adv 2:1835–1841

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Tongji University Research Foundation (1380219039). The authors would like to thank the colleagues from the Chemistry Experimentation Center of Tongji University for their help in the sample characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Deng, Y., Zhang, Q. et al. Facile synthesis and characterization of high-performance NiMoO4 · xH2O nanorods electrode material for supercapacitors. Ionics 21, 2797–2804 (2015). https://doi.org/10.1007/s11581-015-1462-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1462-7

Keywords

Navigation