Skip to main content
Log in

Dinitrile compound containing ethylene oxide moiety with enhanced solubility of lithium salts as electrolyte solvent for high-voltage lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A dinitrile compound containing ethylene oxide moiety (4,7-dioxa-1,10-decanedinitrile, NEON) is synthesized as an electrolyte solvent for high-voltage lithium-ion batteries. The introduction of ethylene oxide moiety into the conventional aprotic aliphatic dinitrile compounds improves the solubility of lithium hexafluorophosphate (LiPF6) used commercially in the lithium-ion battery industry. The electrochemical performances of the NEON-based electrolyte (0.8 M LiPF6 + 0.2 M lithium oxalyldifluoroborate in NEON:EC:DEC, v:v:v = 1:1:1) are evaluated in graphite/Li, LiCoO2/Li, and LiCoO2/graphite cells. Half-cell tests show that the electrolyte exhibits significantly improved compatibility with graphite by the addition of vinylene carbonate and lithium oxalyldifluoroborate and excellent cycling stability with a capacity retention of 97 % after 50 cycles at a cutoff voltage of 4.4 V in LiCoO2/Li cell. A comparative experiment in LiCoO2/graphite full cells shows that the electrolyte (NEON:EC:DEC, v:v:v = 1:1:1) exhibits improved cycling stability at 4.4 V compared with the electrolyte without NEON (EC:DEC, v:v = 1:1), demonstrating that NEON has a great potential as an electrolyte solvent for the high-voltage application in lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    Article  CAS  Google Scholar 

  2. Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288

    Article  CAS  Google Scholar 

  3. Hu M, Pang X, Zhou Z (2013) Recent progress in high-voltage lithium ion batteries. J Power Sources 237:229–242

    Article  CAS  Google Scholar 

  4. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    Article  CAS  Google Scholar 

  5. Kraytsberg A, Ein‐Eli Y (2012) Higher, stronger, better…A review of 5 volt cathode materials for advanced lithium‐ion batteries. Adv Energy Mater 2(8):922–939

    Article  CAS  Google Scholar 

  6. Xu B, Qian D, Wang Z, Meng YS (2012) Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng: R: Rep 73(5):51–65

    CAS  Google Scholar 

  7. Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21(27):9938–9954

    Article  CAS  Google Scholar 

  8. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954

    Article  CAS  Google Scholar 

  9. Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern PC, Curtiss LA, Amine K (2013) Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ Sci 6(6):1806–1810

    Article  CAS  Google Scholar 

  10. Yong T, Wang J, Mai Y, Zhao X, Luo H, Zhang L (2014) Organosilicon compounds containing nitrile and oligo(ethylene oxide) substituents as safe electrolytes for high-voltage lithium-ion batteries. J Power Sources 254:29–32

    Article  CAS  Google Scholar 

  11. Duncan H, Salem N, Abu-Lebdeh Y (2013) Electrolyte formulations based on dinitrile solvents for high voltage Li-ion batteries. J Electrochem Soc 160(6):A838–A848

    Article  CAS  Google Scholar 

  12. Abu-Lebdeh Y, Davidson I (2009) High-voltage electrolytes based on adiponitrile for Li-ion batteries. J Electrochem Soc 156(1):A60–A65

    Article  CAS  Google Scholar 

  13. Abu-Lebdeh Y, Davidson I (2009) New electrolytes based on glutaronitrile for high energy/power Li-ion batteries. J Power Sources 189(1):576–579

    Article  CAS  Google Scholar 

  14. Isken P, Dippel C, Schmitz R, Schmitz R, Kunze M, Passerini S, Winter M, Lex-Balducci A (2011) High flash point electrolyte for use in lithium-ion batteries. Electrochim Acta 56(22):7530–7535

    Article  CAS  Google Scholar 

  15. Gmitter AJ, Plitz I, Amatucci GG (2012) High concentration dinitrile, 3-alkoxypropionitrile, and linear carbonate electrolytes enabled by vinylene and monofluoroethylene carbonate additives. J Electrochem Soc 159(4):A370–A379

    Article  CAS  Google Scholar 

  16. Nagahama M, Hasegawa N, Okada S (2010) High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes. J Electrochem Soc 157(6):A748–A752

    Article  CAS  Google Scholar 

  17. Gerber SA, Turecek F, Gelb MH (2001) Design and synthesis of substrate and internal standard conjugates for profiling enzyme activity in the Sanfilippo syndrome by affinity chromatography/electrospray ionization mass spectrometry. Bioconjug Chem 12(4):603–615

    Article  CAS  Google Scholar 

  18. Nishikawa T (1999). Cyanoethyl compound preparation for electrolytes of lithium or lithium ion secondary batteries—by cyanoethylation of hydroxy-containing compound with acrylonitrile in the presence of lithium hydroxide and lithium, lithium alkoxide or lithium acetylacetonate. JP Patent JP11080112-A/JP3946825-B2

  19. Rossi NA, West R (2009) Silicon‐containing liquid polymer electrolytes for application in lithium ion batteries. Polym Int 58(3):267–272

    Article  CAS  Google Scholar 

  20. Zhang L, Zhang Z, Harring S, Straughan M, Butorac R, Chen Z, Lyons L, Amine K, West R (2008) Highly conductive trimethylsilyl oligo(ethylene oxide) electrolytes for energy storage applications. J Mater Chem 18(31):3713–3717

    Article  CAS  Google Scholar 

  21. Zhang L, Lyons L, Newhouse J, Zhang Z, Straughan M, Chen Z, Amine K, Hamers RJ, West R (2010) Synthesis and characterization of alkylsilane ethers with oligo (ethylene oxide) substituents for safe electrolytes in lithium-ion batteries. J Mater Chem 20(38):8224–8226

    Article  CAS  Google Scholar 

  22. Sun X-G, Angell CA (2005) New sulfone electrolytes for rechargeable lithium batteries: Part I. Oligoether-containing sulfones. Electrochem Commun 7(3):261–266

    Article  CAS  Google Scholar 

  23. Han H-B, Liu K, Feng S-W, Zhou S-S, Feng W-F, Nie J, Li H, Huang X-J, Matsumoto H, Armand M (2010) Ionic liquid electrolytes based on multi-methoxyethyl substituted ammoniums and perfluorinated sulfonimides: preparation, characterization, and properties. Electrochim Acta 55(23):7134–7144

    Article  CAS  Google Scholar 

  24. Fang S, Jin Y, Yang L, S-i H, Tachibana K, Katayama S (2011) Functionalized ionic liquids based on quaternary ammonium cations with three or four ether groups as new electrolytes for lithium battery. Electrochim Acta 56(12):4663–4671

    Article  CAS  Google Scholar 

  25. Chen Z, Dahn J (2004) Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim Acta 49(7):1079–1090

    Article  CAS  Google Scholar 

  26. Qiu X-Y, Zhuang Q-C, Zhang Q-Q, Cao R, Ying P-Z, Qiang Y-H, Sun S-G (2012) Electrochemical and electronic properties of LiCoO2 cathode investigated by galvanostatic cycling and EIS. Phys Chem Chem Phys 14(8):2617–2630

    Article  CAS  Google Scholar 

  27. Levi M, Aurbach D (1997) Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium. J Phys Chem B 101(23):4630–4640

    Article  CAS  Google Scholar 

  28. Mai Y, Shi S, Zhang D, Lu Y, Gu C, Tu J (2012) NiO–graphene hybrid as an anode material for lithium ion batteries. J Power Sources 204:155–161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Hundred Talents Program of the Chinese Academy of Sciences, the National Science Foundation of China (50973112/21202165), Guangzhou Municipal Project of Science and Technology (11A44061500), Guangzhou Municipal Program of Cooperative Innovation, and Science and Technology Project of Huangpu District of Guangzhou City (201423).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingzhi Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.32 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, B., Mai, Y., Wang, J. et al. Dinitrile compound containing ethylene oxide moiety with enhanced solubility of lithium salts as electrolyte solvent for high-voltage lithium-ion batteries. Ionics 21, 909–915 (2015). https://doi.org/10.1007/s11581-014-1272-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1272-3

Keywords

Navigation