Skip to main content
Log in

Potentiometric carbon dioxide sensor based on thin Li3PO4 electrolyte and Li2CO3 sensing electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Potentiometric CO2 gas sensors with thin-film lithium phosphate (Li3PO4) electrolytes were developed by using radio frequency (RF) magnetron sputtering. Li2CO3 and a mixture of Li2TiO3 and TiO2 were used as sensing and reference electrodes, respectively. By using the RF sputtering deposition process, we obtained a dense, crystalline, thin-film Li3PO4 electrolyte with good adhesion on the Al2O3 substrate. The thin-film Li3PO4 electrolyte had good ionic conductivity, i.e., 2.15 × 10−6 S cm−1 at 500 °C, and its activation energy was 0.97 eV. The thin-film Li3PO4 electrolyte was suitable for the miniaturization of potentiometric CO2 sensors. The thin-film potentiometric CO2 sensor provided relatively good sensing response for overall CO2 concentrations (500 to 3,000 ppm and 5 to 20 %) at 500 °C. The Nernstian slope of 78.2 mV/decade obtained for CO2 concentrations from 5 to 20 % at 500 °C was close to the theoretical value (76.6 mV/decade). Although the sensor’s reading deviated from the theoretical value at low CO2 concentrations (500 to 3,000 ppm), the sensor provided better sensing performance than a potentiometric CO2 sensor with a thick electrolyte. As a result, it was assumed that the thin-film sensor could be used to monitor the overall concentration of CO2 in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Szabo N, Lee C, Trimboli J, Figueroa O, Ramamoorthy R, Midlam-Mohler S, Soliman A, Verweij H, Dutta P, Akbar S (2003) Ceramic-based chemical sensors, probes, and field-tests in automobile engines. J Mater Sci 38(21):4239

    Article  CAS  Google Scholar 

  2. Azad AM, Akbar SA, Mhaisalkar SG, Birkefeld LD, Goto KS (1992) Solid-state gas sensors: a review. J Electrochem Soc 139:3690

    Article  CAS  Google Scholar 

  3. Moseley PT (1997) Review article, solid-state gas sensors. Mes Sci Technol 8:223

    Article  CAS  Google Scholar 

  4. Tuller HL (1997) Solid state electrochemical systems-opportunities for nanofabricated or nanostructured materials. J Electroceram 1(3):211

    Article  CAS  Google Scholar 

  5. Lee I, Akbar SA, Dutta PK (2009) High-temperature potentiometric carbon dioxide sensor with minimal interference to humidity. Sensors Actuators B 142:337

    Article  CAS  Google Scholar 

  6. Ward BJ, Liu CC, Hunter GW (2003) Novel processing of NASICON and sodium carbonate/barium carbonate thin and thick films for a CO2 microsensor. J Mater Sci 38:4289

    Article  CAS  Google Scholar 

  7. Currie JF, Essalik A, Marusic J-C (1999) Micromachined thin-film solid-state electrochemical CO2, NO2, and SO2 gas sensor. Sensors Actuators B 59:235

    Article  CAS  Google Scholar 

  8. Wang H, Ren J, Zhang H, Sun G, Jiang Z (2012) Solid potentiometric CO2 sensor using Li3PO4 film as the electrolyte. IEEE Sensors J 12:2001

    Article  CAS  Google Scholar 

  9. Kao S-C, Su G-DJ (2010) Pulsed laser annealing of sodium super ionic conductor for carbon dioxide sensors. Thin Solid Films 519:457–461

    Article  CAS  Google Scholar 

  10. Lee H-K, Choi N-J, Moon SE, Yang WS, Kim J (2012) A solid electrolyte potentiometric CO2 gas sensor composed of lithium phosphate as both the reference and the solid electrolyte materials. J Korean Phys Soc 61:938–941

    Article  CAS  Google Scholar 

  11. Lee C, Dutta PK, Ramamoorthy R, Akbar SA (2006) Mixed ionic and electronic conduction in Li3PO4 electrolyte for a CO2 gas sensor. J Electrochem Soc 153(1):H4

    Article  CAS  Google Scholar 

  12. MacDonald JR (1987) Impedance Spectroscopy—Theory Experiment and Applications. John Wiley & Sons, New York

    Google Scholar 

  13. Money BK, Hariharan K (2009) Crystallization kinetics and phase transformation in superionic lithium metaphosphate glass system. J Phys Condens Matter 21:115102

    Article  CAS  Google Scholar 

  14. Li J, Yao W, Martin S, Vakni D (2008) Lithium ion conductivity in single crystal LiFePO4. Solid State Ion 179:2016

    Article  CAS  Google Scholar 

  15. Li C, Zhang B, Fu Z-W (1886) Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation. Thin Solid Films 515(2006)

  16. Takada K, Fujimoto K, Inada T, Kajiyama A, Kouguchi M, Kondo S, Watanabe M (2002) Sol–gel preparation of Li+ ion conductive thin film. Appl Surf Sci 189:300

    Article  CAS  Google Scholar 

  17. Lee C, Akbar SA, Park CO (2001) Potentiometric CO2 gas sensor with lithium phosphorous oxynitride electrolyte. Sensors Actuators B 80:234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inhee Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, I., Akbar, S.A. Potentiometric carbon dioxide sensor based on thin Li3PO4 electrolyte and Li2CO3 sensing electrode. Ionics 20, 563–569 (2014). https://doi.org/10.1007/s11581-013-1013-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-1013-z

Keywords

Navigation