Skip to main content
Log in

Ionic conductivity and interfacial interaction in penton/AgI composites

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

New nanostructured composite system (1 − x)penton/xAgI (where 0 < x < 1) was synthesized by a solution-based technique, which involves the process of modification of polymer surface. Samples of the composite system were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and electrical impedance spectroscopy. It was shown that AgI nanoparticles form a continuous layer at the surface of penton particles and consist mainly of cubic γ-phase with a small amount of hexagonal β-phase. Maximum conductivity enhancement at almost one order of magnitude higher compared to the pristine AgI has been observed for the sample with x = 0.5. The overall activation energy for conduction varies from 0.23 to 0.38 eV, depending on the content of γ-phase of silver iodide in the samples. Two percolation thresholds has been also recorded at the points x = 0.1 and x = 0.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Edwards JH, Badwal SPS, Duffy GL, Lasich J, Ganakas G (2002) The application of solid state ionic technology for novel methods of energy generation and supply. Solid State Ionics 152–153:843–852. doi:10.1016/S0167-2738(02)00384-3

    Article  Google Scholar 

  2. Agrawal RC, Gupta RK, Mater J (1999) Superionic solids: composite electrolyte phase—an overview. J Mater Sci 34:1131–1162. doi:10.1023/A:1004598902146

    Article  CAS  Google Scholar 

  3. Maier J (1995) Ionic conduction in space charge regions. Prog Solid State Chem 23:171–263. doi:10.1016/0079-6786(95)00004-E

    Article  CAS  Google Scholar 

  4. Guo YG, Lee JS, Maier J (2006) Preparation and characterization of AgI nanoparticles with controlled size, morphology and crystal structure. Solid State Ionics 177:2467–2471. doi:10.1016/j.ssi.2006.02.043

    Article  CAS  Google Scholar 

  5. Jow T, Wangner JB (1979) The effect of dispersed alumina particles on the electrical conductivity of cuprous chloride. J Electrochem Soc 126:1963–1972. doi:10.1149/1.2128835

    Article  CAS  Google Scholar 

  6. Dudney NJ (1985) Effect of interfacial space-charge polarization on the ionic conductivity of composite electrolytes. J Am Ceram Soc 68:538–545. doi:10.1111/j.1151-2916.1985.tb11520.x

    Article  CAS  Google Scholar 

  7. Bunde A, Dieterich W, Roman HE (1985) Dispersed ionic conductors and percolation theory. Phys Rev Lett 55:5–8. doi:10.1103/PhysRevLett.55.5

    Article  CAS  Google Scholar 

  8. Shastry MCR, Rao KJ (1992) Thermal and electrical properties of AgI-based composites. Solid State Ionics 51:311–316. doi:10.1016/0167-2738(92)90214-A

    Article  CAS  Google Scholar 

  9. Maier J (1994) Defect chemistry at interfaces. Solid State Ionics 70(71):43–51. doi:10.1016/0167-2738(94)90285-2

    Article  Google Scholar 

  10. Agrawal RC, Gupta RK, Sinha CK, Kumar R, Pandey GP (2004) Transport properties and battery discharge characteristics of the Ag+ ion conducting composite electrolyte system (1−x)[0.75AgI: 0.25AgCl]: xFe2O3. Ionics 10:113–117. doi:10.1007/BF02410317

    Article  CAS  Google Scholar 

  11. Maier J (2004) Nano-ionics: more than just a fashionable slogan. J Electroceram 13:593–598. doi:10.1007/s10832-004-5163-2

    Article  CAS  Google Scholar 

  12. Berry CR (1967) Structure and optical absorption of AgI microcrystals. Phys Rev 161:848–851. doi:10.1103/PhysRev.161.848

    Article  CAS  Google Scholar 

  13. Shahi K, Wagner JB (1981) Ionic conductivity and thermoelectric power of pure and Al2O3–dispersed AgI. J Electrochem Soc 128:6–13. doi:10.1149/1.2127390

    Article  CAS  Google Scholar 

  14. Uvarov NF, Hairetdinov EF, Bratel NB (1993) Composite solid electrolytes in the AgI–Al2O3 system. Russ J Electrochem 29:1231–1235

    Google Scholar 

  15. Sanzharovskii AT, Epifanov GI (1966) Structure and physicomechanical properties of penton. Mech Compos Mater 2:179–182. doi:10.1007/BF00867109

    Google Scholar 

  16. Mudrak IM, Kotenok OV, Rokytski MO, Levandovski VV, Mischenko VM, Makhno SM, Gorbyk PP (2010) Electrophysical properties of penton/silver iodide system. Ukr J Phys Chem Solid State 11:166–169

    CAS  Google Scholar 

  17. Kim KH, Akase Z, Suzuki T, Shindo D (2010) Charging effects on SEM/SIM contrast of metal/insulator system in various metallic coating conditions. Mater Trans 51:1080–1083. doi:10.2320/matertrans.M2010034

    Article  CAS  Google Scholar 

  18. Rogez J, Garnier A, Knauth P (2002) Solution calorimetric investigation of AgCl–AgI ionic conductor composites at 298 K: observation of metastable AgI modifications. J Phys Chem Solids 63:9–14. doi:10.1016/S0022-3697(00)00195-5

    Article  CAS  Google Scholar 

  19. Chen S, Ida T, Kimura K (1998) Thiol-derivatized AgI nanoparticles: synthesis, characterization, and optical properties. J Phys Chem B 102:6169–6176. doi:10.1021/jp9809991

    Article  CAS  Google Scholar 

  20. Wang Y, Huang L, He H, Li M (2003) Ionic conductivity of nano-scale γ-AgI. Physica B 325:357–361. doi:10.1016/S0921-4526(02)01549-1

    Article  CAS  Google Scholar 

  21. Sheng P, Kohn RV (1982) Geometric effects in continuous-media percolation. Phys Rev B 26:1331–1335. doi:10.1103/PhysRevB.26.1331

    Article  CAS  Google Scholar 

  22. Berlyand L, Golden K (1994) Exact result for the effective conductivity of a continuum percolation model. Phys Rev B 50:2114–2117. doi:10.1103/PhysRevB.50.2114

    Article  CAS  Google Scholar 

  23. Golden K (1994) Scaling law for conduction in partially connected systems. Phys A 207:213–218. doi:10.1016/0378-4371(94)90375-1

    Article  Google Scholar 

  24. Bunde A, Havlin S (1991) Fractals and disordered systems. Springer, New York

    Book  Google Scholar 

  25. Nettelblad B, Martensson E, Onneby C, Gafvert U, Gustafsson A (2003) Two percolation thresholds due to geometrical effects: experimental and simulated results. J Phys D Appl Phys 36:399–405. doi:10.1088/0022-3727/36/4/312

    Article  CAS  Google Scholar 

  26. Liang CC (1973) Conduction characteristics of the lithium iodide–aluminum oxide solid electrolytes. J Electrochem Soc 120:1289–1292. doi:10.1149/1.2403248

    Article  CAS  Google Scholar 

  27. Maier J (1986) On the heterogeneous doping of ionic conductors. Solid State Ionics 18&19:1141–1145. doi:10.1016/0167-2738(86)90323-1

    Article  Google Scholar 

  28. Ida T, Kimura K (1998) Ionic conductivity of small-grain polycrystals of silver iodide. Solid State Ionics 107:313–318. doi:10.1016/S0167-2738(98)00002-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank V. Mischenko for his help with development of technique for hydrophilization of penton surface, S. Makhno for the assistance at electrical measurements, and Prof. P. Gorbyk for the useful discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Mudrak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mudrak, I. Ionic conductivity and interfacial interaction in penton/AgI composites. Ionics 20, 83–88 (2014). https://doi.org/10.1007/s11581-013-1010-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-1010-2

Keywords

Navigation