Skip to main content
Log in

Structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 material prepared by a two-step synthesis via oxalate precursor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiNi1/3Co1/3Mn1/3O2 (LNMCO) powders were formed by a two-step synthesis including preparation of an oxalate precursor by “chimie douce” followed by a solid-state reaction with lithium hydroxide. The product was characterized by TG-DTA, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), Raman spectroscopy, electron spin resonance (ESR), and SQUID magnetometry. XRD data revealed well-crystallized layered LNMCO with α-NaFeO2-type structure (R-3 m space group). Morphology studied by SEM and TEM shows submicronic particles of 400–800 nm with a tendency to agglomerate. The local structure investigated by vibrational spectroscopy (FTIR, Raman), ESR, and SQUID measurements confirms the well-crystallized lattice with a cation disorder of 2.6% Ni2+ ions in Li(3b) sites. Electrochemical tests were carried out in the potential range 2.5–4.5 V vs. lithium metal on samples heated at 900 °C for 12 h. Initial discharge capacity is 154 mAh/g at C/5, while a capacity of 82 mAh/g is still delivered at 10 C by the two-step synthesized LiNi1/3Co1/3Mn1/3O2 as cathode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dahn JR, Zheng T, Thomas CL (1997) J Electrochem Soc 145:851

    Article  Google Scholar 

  2. Zaghib K, Ravet N, Gauthier M, Gendron F, Mauger A, Goodenough JB, Julien CM (2006) J Power Sources 163:560

    Article  CAS  Google Scholar 

  3. Whittingham MS (2004) Chem Rev 104:4271

    Article  CAS  Google Scholar 

  4. Rougier A, Gravereau P, Delmas C (1996) J Electrochem Soc 143:1168

    Article  CAS  Google Scholar 

  5. Julien C, Letranchant C, Rangan S, Lemal M, Ziolkiewicz S, Castro-Garia S, El-Farh L, Benkadour M (2000) Mater Sci Eng B 76:145

    Article  Google Scholar 

  6. Venkatraman S, Manthiram A (2005) Solid State Ionics 176:291

    Article  CAS  Google Scholar 

  7. Ohzuku T, Makimura Y (2001) Chem Lette 744

  8. Kang KS, Meng YS, Breger J, Grey CP, Ceder G (2006) Science 311:977

    Article  CAS  Google Scholar 

  9. MacNeil DD, Lu Z, Dahn JR (2002) J Electrochem Soc 149:A1332

    Article  CAS  Google Scholar 

  10. Lu Z, MacNeil DD, Dahn JR (2001) Electrochem Solid State Lett 4:A200

    Article  CAS  Google Scholar 

  11. Ohzuku T, Makimura Y (2001) Chem Lett 1:642

    Article  Google Scholar 

  12. Yabuuchi N, Ohzuku T (2003) J Power Sources 119:171

    Article  Google Scholar 

  13. Cho J, Manthiram A (2005) J Electrochem Soc 152:A1714

    Article  Google Scholar 

  14. Hwang BJ, Tsai YW, Cariler D, Ceder G (2003) Chem Mater 15:376

    Google Scholar 

  15. Tsai YW, Hwang BJ, Ceder G, Sheu HS, Liu DG, Lee JF (2005) Chem Mater 17:3191

    Article  CAS  Google Scholar 

  16. Kim JM, Chung HT (2004) Electrochim Acta 49:937

    Article  CAS  Google Scholar 

  17. Koyama Y, Tanaka I, Ohuzuku T (2003) J Power Sources 119–121:644

    Article  Google Scholar 

  18. Guo J, Jiao L, Yuan H, Li H, Zhang M, Wang Y (2006) Electrochim Acta 51:3731

    Article  CAS  Google Scholar 

  19. Li D, Muta T, Zhang L, Yoshio M, Noguchi H (2004) J Power Sources 132:150

    Article  CAS  Google Scholar 

  20. Hu SK, Cheng GH, Cheng MY, Hwang BJ, Santhanam R (2009) J Power Sources 188:564

    Article  CAS  Google Scholar 

  21. Park BC, Bang HJ, Yoon CS, Myung ST, Prakash J, Sun YK (2007) J Electrochem Soc 154:A520

    Article  CAS  Google Scholar 

  22. Shen BJ, Ma JS, Wu HC, Lu CH (2008) Mater Lett 62:4075

    Article  CAS  Google Scholar 

  23. He YS, Ma ZF, Lia XZ, Jiang Y (2007) J Power Sources 163:1053

    Article  CAS  Google Scholar 

  24. Ren H, Wang Y, Li D, Ren L, Peng Z, Zhou Y (2008) J Power Sources 178:439

    Article  CAS  Google Scholar 

  25. Ding CX, Meng QS, Wang L, Chen CH (2009) Mater Res Bull 44:492

    Article  CAS  Google Scholar 

  26. Lu CH, Lin YK (2009) J Power Sources 189:40

    Article  CAS  Google Scholar 

  27. Chuan-Fu Z, Ping Y, Xi D, Xuan X, Jing Z, Z Liang Y (2009) Trans Nonferrous Met Soc China 19:635

  28. Mijung N, Lee Y, Cho J (2006) J Electrochem Soc 153:935

    Article  Google Scholar 

  29. Choi J, Manthiram A (2005) Electrochem Solid State Lett 8:C102

    Article  CAS  Google Scholar 

  30. Sinha NN, Munichandraiah N (2010) J Electrochem Soc 157:A647

    Article  CAS  Google Scholar 

  31. Konishi H, Yuasa T, Yoshikawa M (2011) J Power Sources 196:6884

    Article  CAS  Google Scholar 

  32. Gao J, Kim J, Manthiram A (2009) Electrochem Commun 11:84

    Article  CAS  Google Scholar 

  33. Liu H, Tan L (2011) Mater Chem Phys 129:729

    Article  CAS  Google Scholar 

  34. Zhang X, Jiang WJ, Zhu XP, Mauger A, Lu Q, Julien CM (2011) J Power Sources 196:5102

    Article  CAS  Google Scholar 

  35. Shannon RD (1976) Crystallogr Acta A32:751

    Article  CAS  Google Scholar 

  36. Lee K-S, Myung S-T, Prakash J, Yashiro H, Sun Y-K (2008) Electrochim Acta 53:3065

    Article  CAS  Google Scholar 

  37. Shaju KM, Bruce PG (2007) J Power Sources 174:1201

    Article  CAS  Google Scholar 

  38. Zhang X, Mauger A, Lu Q, Groult H, Perrigaud L, Gendron F, Julien CM (2010) Electrochim Acta 55:6440

    Article  CAS  Google Scholar 

  39. Cho TH, Shiosaki Y, Noguchi H (2006) J Power Sources 159:1322

    Article  CAS  Google Scholar 

  40. Abuzeid HM, Hashem AM, Narayanan N, Ehrenberg H, Julien CM (2011) Solid State Ionics 182:108

    Article  CAS  Google Scholar 

  41. Julien C, Massot M (2002) Solid State Ionics 148:53

    Article  CAS  Google Scholar 

  42. Julien C (2000) Solid State Ionics 136:887

    Article  Google Scholar 

  43. Abdel-Ghany A, Mauger A, Gendron F, Zaghib K, Julien CM (2007) ECS Trans 3(36):137

    Article  CAS  Google Scholar 

  44. Zhang X, Jiang WJ, Mauger A, Lu Q, Gendron F, Julien CM (2010) J Power Sources 195:1292

    Article  CAS  Google Scholar 

  45. Goodenough JB (1963) Magnetism and the chemical bond. Wiley, New York

    Google Scholar 

  46. Alonso PJ, Alcala R, Spaeth JM (1990) Phys Rev B 41:10902

    Article  CAS  Google Scholar 

  47. Okubo MS, Elmasry F, Zhang W, Fujisawa M, Sakurai T, Ohta H, Azuma M, Sumimova OA, Kumada N (2010) J Phys Conf Ser 200:022042

    Article  Google Scholar 

  48. Andresen HG (1961) J Chem Phys 35:1090

    Article  CAS  Google Scholar 

  49. Kakazey M, Ivanova N, Boldurev Y, Ivanov S, Sokolsky G, Gonzalez-Rodriguez JG, Vlasova M (2003) J Power Sources 114:170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.M. Julien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashem, A.M., El-Taweel, R.S., Abuzeid, H.M. et al. Structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 material prepared by a two-step synthesis via oxalate precursor. Ionics 18, 1–9 (2012). https://doi.org/10.1007/s11581-011-0635-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-011-0635-2

Keywords

Navigation