Skip to main content
Log in

Solid-state electrochemical gas sensors

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The solid-state electrochemical principle has been a selective and accurate way of sensing chemical components in various environments, including liquid metal, for an extended period of time. Since after Carl Wagner’s interpretation of zirconia, there appeared many advances in chemical sensor applications. The electrochemical techniques for the chemical measurements have, in general, several major advantages compared to other methods. The information of interest is directly converted into electrical signal which may be employed in electronic circuits. Electrochemical measurements are always selective for the quantities that undergo the electrochemical redox reaction. In most cases, reactions at equilibrium are considered, but techniques have also been developed to be able to use kinetic limit. Furthermore, the signal is independent of materials properties, such as the ionic conductivity or impurity as long as it is a predominant ionic conductor. Depending on the type of application, voltage or current measurements are employed. While potentiometric method commonly allows measuring chemical species over a wide range of concentration, amperometric sensors generally cover a quite limited range but have a much higher resolution. In this paper, various principles of electrochemical techniques to measure the chemical quantities are introduced. And there are many examples of the status of researches on electrochemical sensors, such as oxygen sensor, carbon dioxide sensor, NO x sensor, SO x sensor, and hydrogen sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Wagner C (1943) Naturwissenschaften 31:265

    Article  CAS  Google Scholar 

  2. Tillement O (1994) Solid State Ion 68:9–33

    Article  CAS  Google Scholar 

  3. Wagner C (1933) Z Phys Chem B21:25

    CAS  Google Scholar 

  4. Wagner C (1966) Adv Electrochem Electrochem Eng 4:1–46

    CAS  Google Scholar 

  5. Alcock CB, Li B, Fergus JW, Wang L (1992) Solid State Ion 53–56:39–43

    Article  Google Scholar 

  6. Pelloux A, Quessada JP, Fouletier J, Fabray P, Kleitz M (1980) Solid State Ion 1:343

    Article  CAS  Google Scholar 

  7. Weppner W (1973) J Electrochem Soc 120:1673–1676

    Article  Google Scholar 

  8. Worrell WL, Liu QGJ (1984) Electroanal Chem Interfacial Electrochem 168:355

    Article  CAS  Google Scholar 

  9. Miura N, Yao S, Shimizu Y, Yamazoe N (1993) Sens Actuators B 13–14:387–390

    Article  Google Scholar 

  10. Fleming WJ (1977) Electrochem Soc 124:21–28

    Article  CAS  Google Scholar 

  11. Shimizu F, Yamazoe N, Seiyama T (1978) Chem Lett 299–300

  12. Vogel A, Baier G, Schule V (1993) Sens Actuators B 15–16:147–150

    Article  Google Scholar 

  13. Moseley PT (1991) Sen Actuators B 3:167–174

    Article  Google Scholar 

  14. Garzon FH, Mukundan R, Broska EL (2000) Solid State Ion 136–137:633–638

    Article  Google Scholar 

  15. Estell TH, Flengas SNJ (1989) Electrochem Soc 118(12):1890–1900

    Google Scholar 

  16. Satterfield CN (1970) Mass transfer in heterogeneous catalysis. MIT Press, Cambridge, p 30

    Google Scholar 

  17. Hirschfielder JO, Curtiss CF, Bird RB (1967) Molecular theory of gases and liquids. Wiley, New York, p 14

    Google Scholar 

  18. Dietz H (1982) Solid State Ion 6:175–183

    Article  CAS  Google Scholar 

  19. Jackson R (1977) Transport in porous catalysts. Elsevier, Amsterdam, p 9

    Google Scholar 

  20. Usui T, Kurumiya Y, Nuri K, Nakazawa M (1989) Sens Actuators 16:345–358

    Article  CAS  Google Scholar 

  21. Menil F, Coillard V, Lucat C (2000) Sens Actuators B 67:1–23

    Article  Google Scholar 

  22. Saji K, Kondo H, Takeuchi T, Igarashi I (1988) J Electrochem Soc 135(7):1686–1691

    Article  CAS  Google Scholar 

  23. Anderson JE, Graves YB (1981) J Electrochem Soc 128(2):294–300

    Article  CAS  Google Scholar 

  24. Fleming J (1977) J Electrochem Soc 124(1):21–28

    Article  CAS  Google Scholar 

  25. Oh S (1994) Sens Actuators B 20:33–41

    Article  CAS  Google Scholar 

  26. Tanaka H, Nishimura S, Suzuki S, Miki M, Harada T, Kanamaru M, Ueno S, Ichikawa N (1989) SAE Paper No. 890299

  27. Kim BK, Lee JH, Kim H (1996) Solid State Ion 86–88:1079–1085

    Article  Google Scholar 

  28. Vassell WC, Logothesis EM, Hetrick RE (1984) SAE paper No. 841250

  29. Soejima S, Mase S (1985) SAE Paper No. 850378

  30. Sasayama T, Yamauchi T, Byers R, Suzuki S, Ueno S (1991) SAE Paper No. 910501

  31. Colvin AD, Rankin JS, Carduner KR (1993) Sens Actuators B 12:83–90

    Article  CAS  Google Scholar 

  32. Gauthier M, Chamberland A (1977) J Electrochem Soc 124:1579

    Article  CAS  Google Scholar 

  33. Cote R, Bale CW (1984) J Electrochem Soc 131:63–67

    Article  CAS  Google Scholar 

  34. Singh K, Ambekar P, Bhoga SS (1999) Solid State Ion 122:191–196

    Article  CAS  Google Scholar 

  35. Liu J, Weppner W, Balkanski M, Takahashi T, Tuller HL (eds) (1992) In: Solid state ionics. Elsevier Science, Amsterdam, pp 61–68

  36. Holzinger M, Maier J, Sitte W (1996) Solid State Ion 86–88:1055–1062

    Article  Google Scholar 

  37. Maruyama T, Sasaki S, Saito Y (1987) Solid State Ion 23:107–112

    Article  CAS  Google Scholar 

  38. Lang T, Wiemhofer H-D, Gopel W (1996) Sens Actuators B 34:383–387

    Article  Google Scholar 

  39. Porta MA, Kumar RV (2000) Sens Actuators B 71:173–178

    Article  Google Scholar 

  40. Holzinger M, Maier J, Sitte W (1996) Solid State Ion 86–88:1055–1062

    Article  Google Scholar 

  41. Miura N, Yao S, Shimizu Y, Yamazoe N (1992) Sens Actuators B 9:165–170

    Article  Google Scholar 

  42. Lee C, Akbar SA, Park CO (2001) Sens Actuators B 80:234–242

    Article  Google Scholar 

  43. G. Adachi, N. Imanaka (1993) In: Butler M, Yamazoe N, Ricco A (eds) Proc. Symp’on Chemical Sensors II. J Electrochem Soc 93-7:182–192

  44. Stevens R, Binner JGP (1984) J Mater Sci 19:695–715

    Article  CAS  Google Scholar 

  45. Kale GM, Jacob KT (1989) J Mater Res 4(2):417–422

    Article  CAS  Google Scholar 

  46. Yao S, Shimizu Y, Miura N, Yamazoe N (1992) Chem Lett 587–590

  47. Yao S, Shimizu Y, Miura N, Yamazoe N (1993) Sens Actuators B 13:387–390

    Article  Google Scholar 

  48. Hotzel G, Weppner W (1987) Sens Actuators 12:449–453

    Article  Google Scholar 

  49. Shimizu Y, Okamoto Y, Yao S, Miura N, Yamazoe N (1991) Denki Kagaku 59:465–472

    CAS  Google Scholar 

  50. Yao S, Shimizu Y, Miura N, Yamazoe N (1993) Denki Kagaku 61:903–904

    CAS  Google Scholar 

  51. Miura N, Yao S, Shimizu Y, Yamazoe N (1994) Solid State Ion 70–71:572–577

    Article  Google Scholar 

  52. Kato N, Kurachi H, Hamada Y (1996) SAE Paper No. 960334

  53. Kato N, Kurachi H, Hamada Y (1998) SAE Paper No. 980170

  54. Kato N, Kokune N, Lemire B, Walde T (1999) SAE Paper #1999-01-0202

  55. Miura N, Lu G, Yamazoe N, Kurosawa H, Hasei M (1996) J Electrochem Soc 143:L33–L35

    Article  CAS  Google Scholar 

  56. Miura N, Zhuiykov S, Ono T, Hasei M, Yamazoe N (2002) Sens Actuators B 83:222–229

    Article  Google Scholar 

  57. Lu G, Miura N, Yamazoe N (1998) Ionics 4:16–24

    Article  CAS  Google Scholar 

  58. Miura N, Lu G, Yamazoe N, Kurosawa H, Hasei M (1996) J Electrochem Soc 143:L33–L35

    Article  CAS  Google Scholar 

  59. Miura N, Kurosawa H, Hasei M, Lu G, Yamazoe N (1996) Solid State Ion 86–88:1069–1073

    Article  Google Scholar 

  60. Lu G, Miura N, Yamazoe N (1997) J Mater Chem 8:1445–1449

    Article  Google Scholar 

  61. Lu G, Miura N, Yamazoe N (1998) Ionics 4:16–24

    Article  CAS  Google Scholar 

  62. Miura N, Raisen T, Lu G, Yamazoe N (1998) Sens Actuators B 47:84–91

    Article  Google Scholar 

  63. Miura N, Raisen T, Lu G, Yamazoe N (1997) J Electrochem Soc 143:L198–L200

    Article  Google Scholar 

  64. Miura N, Lu G, Ono M, Yamazoe N (1999) Solid State Ion 117:283–290

    Article  CAS  Google Scholar 

  65. Kunimoto A, Hasei M, Yan Y, Gao Y, Ono T, Nakanouchi Y (1999) SAE Paper #1999-01-1280

  66. Hasei M, Ono T, Gao Y, Yan Y, Kunimoto A (2000) SAE Paper #2000-01-1203

  67. Jacob KT, Rao DB (1979) J Electrochem Soc 126:1842

    Article  CAS  Google Scholar 

  68. Worrell WL, Liu QG (1982) Sens Actuators 2:385

    Article  Google Scholar 

  69. Liu QG, Worrell WL (1986) Solid State Ion 18–19:524

    Article  Google Scholar 

  70. Saito Y, Maruyama T, Matsumoto Y, Yano Y (1983) In: Proc. Int. Meet. On Chemical Sensor Fukuoka, p 326

  71. Maruyama T, Saito Y, Matsumoto Y, Yano Y (1985) Solid State Ion 17:281–286

    Article  CAS  Google Scholar 

  72. Akila R, Jacob KT (1989) Sens Actuators 16:311–323

    Article  CAS  Google Scholar 

  73. Rao N, van den Bleek CM, Schoonman J (1992) Solid State Ion 53–56:30–38

    Article  Google Scholar 

  74. Holzinger M, Maier J, Sitte W (1996) Solid State Ion 86–88:1055

    Article  Google Scholar 

  75. Slater DJ, Kumar RV, Fray DJ (1996) Solid State Ion 86–88:1063–1067

    Article  Google Scholar 

  76. Kale GM, Wang L, Hong YR (2003) Solid State Ion 161:155–163

    Article  CAS  Google Scholar 

  77. Nafe H (1997) Solid State Ion 93:117–123

    Article  Google Scholar 

  78. Kale GM, Jacob KT (1989) J Mater Res 4:417

    Article  CAS  Google Scholar 

  79. Yan Y, Miura N, Yamazoe N (1996) J Electrochem Soc 143:1055–1062

    Article  Google Scholar 

  80. Yan Y, Shimizu Y, Miura N, Yamazoe N (1994) Sen Actuators B 20:81–87

    Article  CAS  Google Scholar 

  81. Gee R, Fray DJ (1978) Metall Trans B 9:427

    Article  Google Scholar 

  82. Kurita N, Fukatsu N, Ito K, Ohashi T (1995) J Electrochem Soc 142(5):1552–1559

    Article  CAS  Google Scholar 

  83. Iwahara H, Asakura Y, Katahira K, Tanaka M (2004) Solid state Ionics 168:299–310

    Google Scholar 

  84. Takahashi T, Iwahara H (1980) Rev Chim Miner 17:243

    CAS  Google Scholar 

  85. Kreuer KD (1997) Solid State Ion 97:1–15

    Article  CAS  Google Scholar 

  86. Bonanos N (2001) Solid State Ion 145:265–274

    Article  CAS  Google Scholar 

  87. Schober T (2001) Solid State Ion 139:95–104

    Article  CAS  Google Scholar 

  88. Kobayashi K, Yamaguchi S, Iguchi Y (2002) Solid State Ion 154–155:699–705

    Article  Google Scholar 

  89. Kurita N, Fukatsu N, Kawahara T, Ohashi T (2002) J Electrochem Soc 149(7):D104–D111

    Article  CAS  Google Scholar 

  90. Song S-J, Wachsman ED, Dorris SE, Balachandran U (2003) J Electrochem Soc 150(6):A790–A795

    Article  CAS  Google Scholar 

  91. Kobayashi K, Yamaguchi S, Iguchi Y (1998) Solid State Ion 108:355–362

    Article  CAS  Google Scholar 

  92. Engelen W, Buekenhoudt A, Luyten J, DeSchutter F (1997) Solid State Ion 96:55–59

    Article  CAS  Google Scholar 

  93. Chase MW Jr (1998) J. Phys. Chem. Ref. Data NIST-JANAF Thermochemical Tables Monograph No. 9, 4th Ed. 2

  94. Makhlouf MM, Wang L, Apelian D (1998) Measurement and removal of hydrogen in aluminum alloys. American Foundrymen’s Society, Des Plaines, pp 29–38

    Google Scholar 

  95. Lu G, Miura N, Yamazoe H (1996) Sens Actuators B 35–36:130–135

    Article  Google Scholar 

  96. Lu G, Miura N, Yamazoe N (1996) J Electrochem Soc 143(7):L154–L155

    Article  CAS  Google Scholar 

  97. Hara N, MacDonald DD (1997) J Electrochem Soc 144(12):4152–4157

    Article  CAS  Google Scholar 

  98. Tan Y, Tan TC (1994) J Electrochem Soc 141(2):461–467

    Article  CAS  Google Scholar 

  99. Manchester FD (ed) (2000) In: Phase diagrams of binary hydrogen alloys. ASM International, Materials Park, pp 238–258

  100. Schwandt C, Fray DJ (2000) Ionics 6(3/4):222–229

    Article  CAS  Google Scholar 

  101. Schwandt C, Fray DJ (2003) Determination of hydrogen in molten aluminium and its alloys using an electrochemical sensor. In: Schelsinger M (ed) EPD Congress 2003. The Minerals Metals and Materials Soc., Warrendale, pp 427–438

    Google Scholar 

  102. Schwandt C, Fray DJ, Hills MP, Henson MA, Henson RM, Powell C (2001) A novel electrochemical hydrogen analyzer for use in molten aluminium and its alloys. 6th International AFS Conference on Molten Aluminum Processing 2001. American Foundry Society, Des Plaines, pp 131–140

    Google Scholar 

  103. Kurita N, Fukatsu N, Miyamoto S, Sato F, Nakai H, Irie K, Ohashi T (1996) Metall Mater Trans B 27B:929–935

    Article  CAS  Google Scholar 

  104. Fukatsu N, Kurita N, Koide K, Ohashi T (1998) Solid State Ion 113–115:219–227

    Article  Google Scholar 

  105. Katahira K, Koide K, Iwamoto T, Kurita N, Fukatsu H, Ohashi T (2000) Structure and performance evaluation of hydrogen sensor for molten copper under industrial conditions. In: Mishra B, Yamauchi C (eds) Second Int. Conf. on Processing Materials for Properties. The Minerals Metals & Materials Soc., Warrendale, pp 347–352

    Google Scholar 

  106. Hotzel G, Weppner W (1986) Solid State Ion 18–19:1223–1227

    Article  Google Scholar 

  107. Kurosawa H, Yan Y, Miura N, Yamazoe N (1994) Chem Lett 1733–1736

  108. Kurosawa H, Yan Y, Miura N, Yamazoe N (1995) Solid State Ion 79:338–343

    Article  CAS  Google Scholar 

  109. Nagashima K, Meguro K, Hobo T (1989) Analyst 114:947–949

    Article  CAS  Google Scholar 

  110. Kato N, Nakagaki K, Ina N (1996) SAE Paper 960334:995–999

    Google Scholar 

  111. Ho K, Miyayama M, Yanagida H (1996) J Ceram Soc Jpn 104:995–999

    CAS  Google Scholar 

  112. Somov S, Reinhardt G, Guth U, Gopel W (1996) Sens Actuators B 35–36:409–418

    Article  Google Scholar 

  113. Miura N, Iio M, Lu G, Yamazoe N (1996) J Electrochem Soc 143:L241–L243

    Article  CAS  Google Scholar 

  114. Miura N, Ono M, Shimanoe K, Yamazoe N (1998) J Appl Electrochem 28:863–865

    Article  CAS  Google Scholar 

  115. Miura N, Iio M, Lu G, Yamazoe N (1998) Sens Actuators B 52:169–178

    Article  Google Scholar 

  116. Miura N, Lu G, Yamazoe N (1999) Solid State Ion 117:283–290

    Article  CAS  Google Scholar 

  117. Shimizu Y, Maeda K (1996) Chem Lett 117–118

  118. Norby T (1999) Solid State Ion 125:1–11

    Article  CAS  Google Scholar 

  119. Park CO, Akbar SA, Weppner W (2003) Ceramic electrolytes and electrochemical sensors. J Mater Sci 38:4639–4660 special issue on “Chemical and Bio-Ceramics”

    Article  CAS  Google Scholar 

  120. Iwahara H, Yajima T, Hibino T, Ozaki K, Suzuki H (1993) Solid State Ion 61:65–69

    Article  CAS  Google Scholar 

  121. Slade R, Flint SD, Singh N (1995) Solid State Ion 82:135–141

    Article  CAS  Google Scholar 

  122. Peng Z, Liu M, Balko ED (2001) Sens Actuators B 72:35–40

    Article  Google Scholar 

  123. Nishio K (2001) The fundamentals of automotive engine control sensors. Fontis Media SA, Lausanne, p 91

    Google Scholar 

  124. Fukatsu N (1995) J Alloys Compd 231:706–712

    Article  CAS  Google Scholar 

  125. Fergus JW (2004) Electrochemical measurement of dissolved gases in molten metals. In: Schlesinger ME (ed) EPD Congress 2004, The Minerals Metals & Materials Society

Download references

Acknowledgments

The work was partially supported by a Grant from the Ministry of Education, Science, Sports, and Culture of Japan. The authors also wish to thank Prof. W. Weppner for the helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsu Park.

Glossary

Solid electrolyte

A solid which carries currents mainly by ions.

Potentiometric sensor

An electrochemical sensor which transforms chemical concentration into the electrical voltage.

Amperometric sensor

An electrochemical sensor which measures the chemical concentration by the limiting currents resulting from the chemical species to be detected.

Mixed potential

The potential where the rate of anodic reaction equals to the rate of cathodic reaction.

emf

Electromotive forces.

Galvanic cell

A cell which converts chemical energy to electrical energy.

IR drop

A non-equilibrium potential drop occurring in an electrolyte due to the resistance of electrolyte.

Open-circuit voltage

A voltage measured across the galvanic cell when no currents pass through the cell.

Over-potential

The difference between the applied potential and the equilibrium potential.

Isotherm

The amount of adsorbates as a function of gas pressure at a constant temperature.

Perovskite

Oxides which exhibit ABO3 arrangement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, C.O., Fergus, J.W., Miura, N. et al. Solid-state electrochemical gas sensors. Ionics 15, 261–284 (2009). https://doi.org/10.1007/s11581-008-0300-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-008-0300-6

Keywords

Navigation