Skip to main content
Log in

Characterization of the surface of positive electrodes for Li-ion batteries using 7Li MAS NMR

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The growth and evolution of the interphase, due to contact with the ambient atmosphere or electrolyte, are followed using 7Li magic-angle spinning nuclear magnetic resonance (MAS NMR) in the case of two materials amongst the most promising candidates for positive electrodes for lithium batteries: LiFePO4 and LiMn0.5Ni0.5O2. The use of appropriate experimental conditions to acquire the NMR signal allows observing only the «diamagnetic» lithium species at the surface of the grains of active material. The reaction of LiMn0.5Ni0.5O2 with the ambient atmosphere or LiPF6 (1 M in Ethylene Carbonated/DiMéthyl Carbonate (EC/DMC)) electrolyte is extremely fast and leads to an important amount of lithium-containing diamagnetic species compared to what can be observed in the case of LiFePO4. The two studied materials display a completely different surface chemistry in terms of reactivity and/or kinetics of the surface towards electrolyte. Moreover, these results show that MAS NMR is a very promising tool to monitor phenomena taking place at the interface between electrode and electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Makimura Y, Ohzuku T (2003) J Power Sources 156:119

    Google Scholar 

  2. Lu Z, Beaulieu LY, Donaberger RA, Thomas CL, Dahn JR (2002) J Electrochem Soc 149(6):A778

    Article  CAS  Google Scholar 

  3. Yoon WS, Paik Y, Yang XQ, Balasubramanian M, McBreen J, Grey CP (2002) Electrochem Solid-State Lett 5(11):A263

    Article  CAS  Google Scholar 

  4. Johnson CS, Kim JS, Kropf AJ, Kahaian AJ, Vaughey JT, Fransson LML, Edström K, Thackeray MM (2003) Chem Mater 15(12):2313

    Article  CAS  Google Scholar 

  5. Bréger J, Dupré N, Chupas PJ, Lee PL, Proffen T, Parise JB, Grey CP (2005) J Am Chem Soc 127(20):7529

    Article  Google Scholar 

  6. Li HH, Yabuuchi N, Meng YS, Kumar S, Breger J, Grey CP, Yang SH (2007) Chem Mater 19(10):2551

    Article  Google Scholar 

  7. Hinuma Y, Meng YS, Kang K, Ceder G (2007) Chem Mater 19(7):1790

    Article  CAS  Google Scholar 

  8. Breger J, Jiang M, Dupré N, Meng YS, Yang SH, Ceder G, Grey CP (2005) J Solid State Chem 178(9):2575

    Article  CAS  Google Scholar 

  9. Andersson A, Kalska B, Häggström L, Thomas JO (2000) Solid State Ionics 130(1–2):41

    Article  CAS  Google Scholar 

  10. Dominko R, Goupil JM, Bele M, Gaberscek M, Remskar M, Hanzel D, Jamnik J (2006) J Power Sources 153:274

    Article  CAS  Google Scholar 

  11. Striebel K, Shim J, Srinivasan V, Newman J (2005) J Electrochem Soc 152(4):A664

    Article  CAS  Google Scholar 

  12. Chen G, Song X, Richardson TJ (2007) J Electrochem Soc 154(7):A627

    Article  CAS  Google Scholar 

  13. Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM (2007) Chem Mater 19(15):3740

    Article  CAS  Google Scholar 

  14. Wilcox JD, Doeff MM, Marcinek M, Kostecki R (2007) J Electrochem Soc 154(5):A389

    Article  CAS  Google Scholar 

  15. Ellis B, Kan WH, Makahnouk WRM, Nazar LF (2007) J Mater Chem 17(30):3248

    Article  CAS  Google Scholar 

  16. Wang L, Huang Y, Jiang R, Jia D (2007) Electrochim Acta 52(24):6778

    Article  CAS  Google Scholar 

  17. Sundarayya Y, Kumara SKC, Sunandana CS (2007) Mater Res Bull 42(11):1942

    Article  CAS  Google Scholar 

  18. Aurbach D, Levi MD, Levi E, Teller H, Markovsky B, Salitra G, Heider U, Heider L (1998) J Electrochem Soc 145(9):3024

    Article  CAS  Google Scholar 

  19. Ericksson E (2001) Ph. D Thesis, Uppsala University

  20. Ménétrier M, Vaysse C, Croguennec L, Delmas C, Jordy C, Bonhomme F, Biensan P (2004) Electrochem Solid-State Lett 7(6):A140

    Article  Google Scholar 

  21. Meyer B, Leifer N, Sakamoto S, Greenbaum S, Grey CP (2005) Electrochem Solid-State Lett 8(3):A145

    Article  CAS  Google Scholar 

  22. Tucker MC, Braun A, Bergmann U, Wang H, Glatzel P, Reimer JA, Cairns EJ (2001) in: Landgrebe A, Klinger R J (eds) Interfaces, Phenomena and Nanostructures in lithium Batteries Workshop, Electrochem. Soc Proc Series

  23. Dominko R, Goupil JM, Bele M, Gaberscek M, Remskar M, Hanzel D, Jamnik J (2005) J Electrochem Soc 152(5):A858

    Article  CAS  Google Scholar 

  24. Dupré N, Martin JF, Yamada A, Kanno R, Guyomard (2007) J Am Chem Soc (in press)

  25. Matsushita T, Dokko K, Kanamura K (2005) J Electrochem Soc 152(11):A2229

    Article  Google Scholar 

  26. Ota H, Akai T, Namita H, Yamaguchi S, Nomura M (2003) J Power Sources 119–121:567

    Article  Google Scholar 

  27. Neudecker BJ, Zuhr RA, Kwak BS, Bates JB, Robertson JD (1998) J Electrochem Soc 145(12):4148

    Article  CAS  Google Scholar 

  28. Dupin JC, Gonbeau D, Benqlilou-Moudden H, Vinatier Ph, Levasseur A (2001) Thin Solid Films 384:23

    Article  CAS  Google Scholar 

  29. Edström K, Gustafsson T, Thomas JO (2004) Electrochim Acta 50(2–3):397

    Article  Google Scholar 

  30. Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, Kovacheva D (2007) J Power Sources 165(2):491

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Dupré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupré, N., Oliveri, J., Degryse, J. et al. Characterization of the surface of positive electrodes for Li-ion batteries using 7Li MAS NMR. Ionics 14, 203–207 (2008). https://doi.org/10.1007/s11581-007-0189-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-007-0189-5

Keywords

Navigation