Skip to main content
Log in

Irreversible investment with fixed adjustment costs: a stochastic impulse control approach

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

We consider an optimal stochastic impulse control problem over an infinite time horizon motivated by a model of irreversible investment choices with fixed adjustment costs. By employing techniques of viscosity solutions and relying on semiconvexity arguments, we prove that the value function is a classical solution to the associated quasi-variational inequality. This enables us to characterize the structure of the continuation and action regions and construct an optimal control. Finally, we focus on the linear case, discussing, by a numerical analysis, the sensitivity of the solution with respect to the relevant parameters of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The fact that only positive intervention, i.e. \(i_n>0\), is allowed is expressed in the economic literature of Real Options by saying that the investment is irreversible.

  2. Other than in [63, Ch. 4, Sec. 5], irreversible and reversible investment problems with no fixed investment costs are largely treated in the mathematical economic literature, both over finite and infinite horizon. We mention, among others [1, 2, 4, 5, 10, 11, 23, 24, 30, 32, 33, 37, 39,40,41,42, 52, 55, 59, 64, 70].

  3. The stochastic impulse control setting has been widely employed in several other applied fields: e.g., exchange rate [20, 49], portfolio optimization with transaction costs [51, 57], inventory and cash management [27, 67, 68] and real options [47, 53].

  4. See, e.g. [13, 27, 48, 51, 57] and, in a much more general context of jump-diffusion [60, Ch. 6] for the guess-and-verify approach.

  5. The smooth-fit principle has also been established, when the diffusion is assumed to be transient, by techniques based on excessive function (see [66]).

  6. This is a well known rule in the economic literature of inventory problems, see [8, 67, 68].

  7. Actually, we should consider \(b(x)=\nu x\) if \(x>0\) and \(b(x)=0\) otherwise and similarly for \(\sigma \), in order to fit Assumption 2.1. But this does not matter because our controlled process lies in \(\mathbb {R}_{++}\).

  8. The simulations are done for negative values of \(\nu \), thinking of it as a depreciation factor. We omit, for the sake of brevity, to report the simulations that we have performed for positive values of \(\nu \), as the outputs show the same qualitative behaviour as in the case of negative \(\nu \).

  9. In this case the optimal control consists in a reflection policy at a boundary; in other terms the interval [sS] degenerates in a singleton \(\{s\}=\{S\}\).

References

  1. Abel, A.B., Eberly, J.C.: Optimal investment with costly reversibility. Rev. Econ. Stud. 63, 581–593 (1996)

    Article  MATH  Google Scholar 

  2. Aïd, R., Federico, S., Pham, H., Villeneuve, B.: Explicit investment rules with time-to-build and uncertainty. J. Econ. Dyn. Control 51, 240–256 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alvarez, L.H.: A class of solvable impulse control problems. Appl. Math. Optim. 49, 265–295 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alvarez, L.H.: Irreversible capital accumulation under interest rate uncertainty. Math. Methods Oper. Res. 72(2), 249–271 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alvarez, L.H.: Optimal capital accumulation under price uncertainty and costly reversibility. J. Econ. Dyn. Control 35(10), 1769–1788 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alvarez, L.H., Lempa, J.: On the optimal stochastic impulse control of linear diffusions. SIAM J. Control Optim. 47(2), 703–732 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anderson, R.F.: Discounted replacement, maintenance, and repair problems in reliability. Math. Oper. Res. 19(4), 909–945 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arrow, K.J., Harris, T., Marshak, J.: Optimal inventory policy. Econometrica 19(3), 250–272 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  9. Avriel, M., Diewert, W.E., Schaible, S., Zang, I.: Generalized Concavity. Classics in Applied Mathematics, vol. 63. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  10. Baldursson, F.M., Karatzas, I.: Irreversible investment and industry equilibrium. Finance Stoch. 1(1), 69–89 (1997)

    Article  MATH  Google Scholar 

  11. Bank, P.: Optimal control under a dynamic fuel constraint. SIAM J. Control Optim. 44(4), 1529–1541 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bar-Ilan, A., Sulem, A.: Explicit solution of inventory problems with delivery lags. Math. Oper. Res. 20(3), 709–720 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bar-Ilan, A., Sulem, A., Zanello, A.: Time-to-build and capacity choice. J. Econ. Dyn. Control 26, 69–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bayraktar, E., Emmerling, T., Menaldi, J.L.: On the impulse control of jump diffusions. SIAM J. Control Optim. 51(3), 2612–2637 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Belak, C., Christensen, S., Seifred, F.T.: A general verification result for stochastic impulse control problems. SIAM J. Control Optim. 55(2), 627–649 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bensoussan, A., Chevalier-Roignant, B.: Sequential capacity expansion options. Oper. Res. 67(1), 33–57

  17. Bensoussan, A., Lions, J.L.: Impulse Control and Quasi-Variational Inequalities. Gauthier-Villars, Paris (1984)

    MATH  Google Scholar 

  18. Bensoussan, A., Liu, J., Yuan, J.: Singular control and impulse control: a common approach. Discrete Contin. Dyn. Syst. (Ser. B) 13(1), 27–57 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Breiman, L.: Probability. Classics in Applied Mathematics. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  20. Cadellinas, A., Zapatero, F.: Classical and impulse stochastic control of the exchange rate using interest rates and reserves. Math. Finance 10(2), 141–156 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cadenillas, A., Lakner, P., Pinedo, M.: Optimal control of a mean-reverting inventory. Oper. Res. 58(6), 1697–1710 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, Y.-S.A., Guo, X.: Impulse control of multidimensional jump diffusions in finite time horizon. SIAM J. Control Optim. 51(3), 2638–2663 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chiarolla, M.B., Ferrari, G.: Identifying the free boundary of a stochastic, irreversible investment problem via the Bank–El Karoui representation theorem. SIAM J. Control Optim. 52(2), 1048–1070 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chiarolla, M.B., Haussman, U.G.: On a stochastic irreversible investment problem. SIAM J. Control Optim. 48(2), 438–462 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Christensen, S.: On the solution of general impulse control problems using superharmonic functions. Stoch. Process. Appl. 124(1), 709–729 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Christensen, S., Salminen, P.: Impulse control and expected suprema. Adv. Appl. Probab. 49(1), 238–257 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Constantidinies, G.M., Richard, S.F.: Existence of optimal simple policies for discounted-cost inventory and cash management in continuous time. Oper. Res. 26(4), 620–636 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dai, J.G., Yao, D.: Brownian inventory models with convex holding cost, part 1: average-optimal controls. Stoch. Syst. 3(2), 442–499 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dai, J.G., Yao, D.: Brownian inventory models with convex holding cost, part 2: discount-optimal controls. Stoch. Syst. 3(2), 500–573 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Davis, M.H., Dempster, M.A.H., Sethi, S.P., Vermes, D.: Optimal capacity expansion under uncertainty. Adv. Appl. Probab. 19, 156–176 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. Davis, M., Guo, X., Wu, G.: Impulse control of multidimensional jump diffusions. SIAM J. Control Optim. 48, 5276–5293 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. De Angelis, T., Ferrari, G.: A stochastic partially reversible investment problem on a finite time-horizon: free-boundary analysis. Stoch. Process. Appl. 124(3), 4080–4119 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. De Angelis, T., Federico, S., Ferrari, G.: Optimal boundary surface for irreversible investment with stochastic costs. Math. Oper. Res. 42(4), 1135–1161 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Eastham, J.F., Hastings, K.J.: Optimal impulse control of portfolios. Math. Oper. Res. 13(4), 588–605 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Egami, M.: A direct solution method for stochastic impulse control problems of one-dimensional diffusions. SIAM J. Control Optim. 47(3), 1191–1218 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Evans, L.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, Second edn. AMS, Providence (2010)

    MATH  Google Scholar 

  37. Federico, S., Pham, H.: Characterization of optimal boundaries in reversible investment problems. SIAM J. Control Optim. 52(4), 2180–2223 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ferrari, G., Koch, T.: On a strategic model of pollution control. Ann. Oper. Res. (2018). https://doi.org/10.1007/s10479-018-2935-7

  39. Ferrari, G.: On an integral equation for the free-boundary of stochastic, irreversible investment problems. Ann. Appl. Probab. 25(1), 150–176 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ferrari, G., Salminen, P.: Irreversible investment under Lèvy uncertainty: an equation for the optimal boundary. Adv. Appl. Probab. 48(1), 298–314 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gu, J.W., Steffensen, M., Zheng, H.: Optimal dividend strategies of two collaborating businesses in the diffusion approximation model. Math. Oper. Res. 43, 377–398 (2018)

    Article  MathSciNet  Google Scholar 

  42. Guo, X., Pham, H.: Optimal partially reversible investments with entry decision and general production function. Stoch. Process. Appl. 115(5), 705–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Guo, X., Wu, G.: Smooth fit principle for impulse control of multidimensional diffusion processes. SIAM J. Control Optim. 48(2), 594–617 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Harrison, J.M., Sellke, T.M., Taylor, A.J.: Impulse control of Brownian motion. Math. Oper. Res. 8(3), 454–466 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  45. He, S., Yao, D., Zhang, H.: Optimal ordering policy for inventory systems with quantity-dependent setup costs. Math. Oper. Res. 42(4), 979–1006 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Helmes, K.L., Stockbridge, R.H., Zhu, C.: A measure approach for continuous inventory models: discounted cost criterion. SIAM J. Control Optim. 53(4), 2100–2140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hodder, J.E., Triantis, A.: Valuing flexibility as a complex option. J. Finance 45, 549–565 (1990)

    Article  Google Scholar 

  48. Jack, A., Zervos, M.: Impulse control of one-dimensional itô diffusions with an expected and a pathwise ergodic criterion. Appl. Math. Optim. 54, 71–93 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Jeanblanc-Picqué, M.: Impulse control method and exchange rate. Math. Finance 3(2), 161–177 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  50. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)

    MATH  Google Scholar 

  51. Korn, R.: Portfolio optimization with strictly positive transaction costs and impulse control. Finance Stoch. 2, 85–114 (1998)

    Article  MATH  Google Scholar 

  52. Manne, A.S.: Capacity expansion and probabilistic growth. Econometrica 29(4), 632–649 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mauer, D.C., Triantis, A.: Interactions of corporate financing and investment decisions: a dynamic framework. J. Finance 49, 1253–1277 (1994)

    Article  Google Scholar 

  54. McDonald, R., Siegel, D.: The value of waiting to invest. Q. J. Econ. 101(4), 707–727 (1986)

    Article  Google Scholar 

  55. Merhi, A., Zervos, M.: A model for reversible investment capacity expansion. SIAM J. Control Optim. 46(3), 839–876 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Mitchell, D., Feng, H., Muthuraman, K.: Impulse control of interest rates. Oper. Res. 62(3), 602–615 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. Morton, J., Oksendal, B.: Optimal portfolio management with fixed costs of transactions. Math. Finance 5, 337–356 (1995)

    Article  Google Scholar 

  58. Muthuraman, K., Seshadri, S., Wu, Q.: Inventory management with stochastic lead times. Math. Oper. Res. 40(2), 302–327 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Øksendal, A.: Irreversible investment problems. Finance Stoch. 4(2), 223–250 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  60. Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump-Diffusions. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  61. Øksendal, B., Ubøe, J., Zhang, T.: Non-robustness of some impulse control problems with respect to intervention costs. Stoch. Anal. Appl. 20(5), 999–1026 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  62. Ormeci, M., Dai, J.G., Vande Vate, J.: Impulse control of Brownian motion: the constrained average cost case. Math. Oper. Res. 56(3), 618–629 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  63. Pham, H.: Continuous-Time Stochastic Control and Applications with Financial Applications. Stochastic Modelling and Applied Probability, vol. 61. Springer, Berlin (2009)

    MATH  Google Scholar 

  64. Riedel, F., Su, X.: On irreversible investment. Finance Stoch. 15(4), 607–633 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  65. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  66. Salminen, P., Ta, B.Q.: Differentiability of excessive functions of one-dimensional diffusions and the principle of smooth-fit. Adv. Math. Finance 104, 181–199 (2015)

    MathSciNet  MATH  Google Scholar 

  67. Scarf, H.: The optimality of \((S,s)\) policies in the dynamic inventory problem. In: Karlin, S., Suppes, P. (eds.) Mathematical methods of social sciences 1959: proceedings of the first Stanford symposium, pp. 196–202. Stanford University Press (1960)

  68. Sulem, A.: A solvable one-dimensional model of a diffusion inventory system. Math. Oper. Res. 11, 125–133 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  69. Sulem, A.: Explicit solution of a two-dimensional deterministic inventory problem. Math. Oper. Res. 11(1), 134–146 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  70. Wang, H.: Capacity expansion with exponential jump diffusion process. Stoch. Stoch. Rep. 75(4), 259–274 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  71. Yamazaki, K.: Inventory control for spectrally positive Lévy demand processes. Math. Oper. Res. 42(1), 302–327 (2016)

    Google Scholar 

  72. Yong, J., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB equations. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are sincerely grateful to the Associate Editor and to two anonymous Referees for their careful reading and very valuable comment that improved the final version of the paper. They also thank Giorgio Ferrari for his very valuable comments and suggestions. Mauro Rosestolato thanks the Department of Political Economics and Statistics of the University of Siena for the kind hospitality in March 2017 and the grant Young Investigator Training Program financed by Associazione di Fondazioni e Casse di Risparmio Spa supporting this visit. He also thanks the ERC 321111 Rofirm for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Federico.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

Proposition A.1

Under Assumption 2.1 the boundaries 0 and \(+\infty \) are natural in the sense of Feller’s classification for the diffusion \(Z^{0,x}\).

Proof

Clearly \(+\infty \) is not accessible, in the sense that \(Z^{0,x}\) does not explode in finite time. It remains to show that 0 is not accessible, that is

$$\begin{aligned} x\in \mathbb {R}_{++} \ \Longrightarrow \ Z^{0,x}_{t}>0 \quad \mathbb {P}\text{-a.s. }\ \forall t\ge 0; \end{aligned}$$
(A.1)

that both 0 and \(+\infty \) are not entrance, that is

$$\begin{aligned} \lim _{x\downarrow 0}\mathbb {P}\{\tau _{x,y}<t\}=0, \quad \lim _{x\uparrow \infty }\mathbb {P}\{\tau _{x,y}<t\}=0, \quad \forall t,y\in \mathbb {R}_{++}. \end{aligned}$$
(A.2)

To this end, we introduce the speed measure m of the diffusion \(Z^{0,x}\) transformed to natural scale (see [19, Prop. 16.81, Th. 16.83]). Up to a multiplicative constant, we have

$$\begin{aligned} m(dy)= \frac{2}{\sigma ^2(y)} e^{\int _1^y\frac{2b(\xi )}{\sigma ^2(\xi )}d\xi } dy, \quad y\in \mathbb {R}_{++}. \end{aligned}$$

Assumption 2.1 implies that for some \(C_0,C_1>0\) we have \(|b(\xi )|\le C_0 \xi \) and \(\sigma ^2(\xi )\le C_1\xi ^2\) for every \(\xi \in \mathbb {R}_+\). According to [19, Prop. 16.43] we compute \(\int _0^1 ym(dy) \). We have

$$\begin{aligned} \int _0^1 ym(dy)\ge \int _0^1 \frac{2y}{\sigma ^2(y)} e^{\int _1^y\frac{-2C_0\xi }{\sigma ^2(\xi )}d\xi } dy. \end{aligned}$$

Set \(F(y):=\int _1^y\frac{-2C_0\xi }{\sigma ^2(\xi )}d\xi \). We have

$$\begin{aligned} \int _0^1 \frac{2y}{\sigma ^2(y)} e^{\int _1^y\frac{-2C_0\xi }{\sigma ^2(\xi )}d\xi } dy= & {} -\,\frac{1}{C_0} \int _0^1 F^{\prime }(y) e^{F(y)} dy= -\frac{1}{C_0}\left[ e^{F(1)}-\lim _{y\rightarrow 0^+}e^{F(y)}\right] \\= & {} -\,\frac{1}{C_0}\left[ 1-\lim _{y\rightarrow 0^+}e^{\int _1^y -\frac{2C_0\xi }{\sigma ^2(\xi )}d\xi }\right] \\= & {} -\,\frac{1}{C_0}\left[ 1-e^{\lim _{y\rightarrow 0^+}\int _y^1 \frac{2C_0}{C_1\xi }d\xi }\right] =+\infty . \end{aligned}$$

This shows, by [19, Prop. 16.43], that (A.1) holds, The fact that 0 is not-entrance, i.e. that the first limit in (A.2) holds, is then consequence of [19, Prop. 16.45(a)]. Let us show, finally, that also \(+\infty \) is not-entrance, i.e. that the second limit in (A.2) holds. In this case, according to [19, Prop. 16.45(b)] we consider \(\int _1^{+\infty } ym(dy)\) and see, with the same computations as above, that it is equal to \(+\infty \). By the aforementioned result we conclude that \(+\infty \) is not entrance. \(\square \)

Remark A.2

The property (A.1) can be generalized to the case of random initial data. Let \(\tau \) be a (possibly infinite) \(\mathbb {F}\)-stopping time and let \(\xi \) be an \(\mathscr {F}_\tau \)-measurable random variable, clearly we have the equality in law \( Z^{\tau ,\xi }_{t+\tau }= \left( Z^{0,x}_t \right) _{|_{x=\xi }}\). By (A.1), it then follows that

$$\begin{aligned} \xi \ \mathscr {F}_\tau \text{-measurable } \text{ random } \text{ variable } , \xi>0\ \mathbb {P}\text{-a.s. } \ \Longrightarrow \ Z^{\tau ,\xi }_{t+\tau }>0 \ \mathbb {P}\text{-a.s. } \text{ on } \{\tau <\infty \},\ \forall t\ge 0. \end{aligned}$$
(A.3)

Lemma A.3

Let \(I\in \mathscr {I}\), \(x,y\in \mathbb {R}_{++}\).

  1. (i)

    We have

    $$\begin{aligned} \mathbb {E} \left[ |X^{x,I}_s-X^{y,I}_s|^4 \right] \le |x-y|^4 e^{C_0 t}\quad \forall t \ge 0, \end{aligned}$$
    (A.4)

    where \(C_0 {:}{=}4L_b+6L_\sigma ^2.\)

  2. (ii)

    For each \(\lambda \in [0,1]\) and \(x,y\in \mathbb {R}_{++}\), define \(z_\lambda {:}{=}\lambda x+(1-\lambda )y\). Then

    $$\begin{aligned} \mathbb {E} \left[ \left| X^{z_\lambda ,I}_t - \lambda X^{x,I}_t - (1- \lambda ) X^{y,I}_t\right| ^2 \right] \le A_0\lambda ^2(1-\lambda )^2 |x-y|^{4} e^{B_0t} \quad \forall \lambda \in [0,1], \ \forall t\ge 0, \end{aligned}$$
    (A.5)

    where \(A_0>0\) and \(B_0 {:}{=}2L_b+2L_\sigma ^2+\tilde{L}_b\).

Proof

(i) We apply Itô’s formula to \(|X^{x,I}-X^{y,I}|^4\) and then—after a standar localization procedure with stopping times to let the stochastic integral term be a martingale and all the other expectations be well defined and finite; see e.g. the proof of Proposition 3.2—we take the expectation. We get, also using Assumption 2.1,

$$\begin{aligned} \mathbb {E}\left[ \left| X^{x,I}_t-X^{y,I}_t\right| ^4\right]&= |x-y|^4+4\mathbb {E}\int _0^t \left( X^{x,I}_u-X^{y,I}_u\right) ^3\left( b\left( X^{x,I}_u\right) -b\left( X^{y,I}_u\right) \right) du\\&\quad + 6\mathbb {E}\int _0^t \left( X^{x,I}_u-X^{y,I}_u\right) ^2\left( \sigma \left( X^{x,I}_u\right) -\sigma \left( X^{y,I}_u\right) \right) ^2du\\&\le |x-y|^4+\left( 4L_b+6L_\sigma ^2\right) \int _0^t \mathbb {E}\left[ |X^{x,I}_u-X^{y,I}_u|^4\right] du. \end{aligned}$$

The claim follows by Gronwall’s inequality.

(ii) Define \(\Sigma ^{\lambda ,x,y,I}{:}{=}\lambda X^{x,I} + (1- \lambda ) X^{y,I}\). We apply Itô’s formula to the process \((X^{z_\lambda ,I}-\Sigma ^{\lambda ,x,y,I})^2\) and then—after a standar localization procedure with stopping times to let the stochastic integral term be a martingale and all the other expectations are well defined and finite; see e.g. the proof of Proposition 3.2—take the expectation, obtaining, also using Assumption 2.1,

$$\begin{aligned}&\mathbb {E} \left[ \left( X^{z_\lambda ,I}_t-\Sigma ^{\lambda ,x,y,I}_t\right) ^2 \right] \nonumber \\&\quad = 2 \int _0^t \mathbb {E} \left[ \left( X^{z_\lambda ,I}_u-\Sigma ^{\lambda ,x,y,I}_u\right) \left( b\left( X^{z_\lambda ,I}_u\right) - \lambda b\left( X^{x,I}_u\right) - (1-\lambda ) b\left( X^{y,I}_u\right) \right) \right] du\nonumber \\&\qquad + \int _0^t \mathbb {E} \left[ \left( \sigma \left( X^{z_\lambda ,I}_u\right) - \lambda \sigma \left( X^{x,I}_u\right) - (1-\lambda ) \sigma \left( X^{y,I}_u\right) \right) ^2 \right] du\nonumber \\&\quad \le 2 \int _0^t \mathbb {E} \left[ \left| X^{z_\lambda ,I}_u-\Sigma ^{\lambda ,x,y,I}_u\right| \cdot \left| b\left( X^{z_\lambda ,I}_u\right) - b\left( \Sigma ^{\lambda ,x,y,I}_u\right) \right| \right] du\nonumber \\&\qquad + 2 \int _0^t \mathbb {E} \left[ \left| X^{z_\lambda ,I}_u-\Sigma ^{\lambda ,x,y,I}_u \right| \cdot \left| b\left( \Sigma ^{\lambda ,x,y,I}_u\right) - \lambda b\left( X^{t,\xi ,I}_u\right) - (1-\lambda ) b\left( X^{t,\xi ^{\prime },I}_u\right) \right| \right] du\nonumber \\&\qquad +2\int _0^t \mathbb {E} \left[ \left| \sigma \left( X^{z_\lambda ,I}_u\right) - \sigma \left( \Sigma ^{\lambda ,x,y,I}_u\right) \right| ^2 \right] du\nonumber \\&\qquad + 2\int _0^t \mathbb {E} \left[ \left| \sigma \left( \Sigma ^{\lambda ,x,y,I}_u\right) - \lambda \sigma \left( X^{x,I}_u\right) - (1-\lambda ) \sigma \left( X^{y,I}_u\right) \right| ^2 \right] du\nonumber \\&\quad \le 2\left( L_b+L_\sigma ^2 \right) \int _0^t \mathbb {E} \left[ \left| X^{z_\lambda ,I}_u-\Sigma ^{\lambda ,x,y,I}_u\right| ^2 \right] du\nonumber \\&\qquad + 2 \int _0^t \mathbb {E} \left[ \left| X^{z_\lambda ,I}_u-\Sigma ^{\lambda ,x,y,I}_u \right| \cdot \left| b\left( \Sigma ^{\lambda ,x,y,I}_u\right) - \lambda b\left( X^{t,\xi ,I}_u\right) - (1-\lambda ) b\left( X^{t,\xi ^{\prime },I}_u\right) \right| \right] du\nonumber \\&\qquad +2 \int _0^t \mathbb {E} \left[ \left| \sigma \left( \Sigma ^{\lambda ,x,y,I}_u\right) - \lambda \sigma \left( X^{x,I}_u\right) - (1-\lambda ) \sigma \left( X^{y,I}_u\right) \right| ^2 \right] du. \end{aligned}$$
(A.6)

By doing the same computations as in [72, p. 188] in order to obtain [72, p. 188, formulae (4.22) and (4.23)], we have

$$\begin{aligned} \left| b\left( \lambda x^{\prime }+(1-\lambda )x^{\prime \prime }\right) -\lambda b(x^{\prime }) -(1-\lambda ) b(x^{\prime \prime })\right|\le & {} \tilde{ L}_b\lambda (1-\lambda )|x^{\prime }-x^{\prime \prime }|^2 \quad \forall x^{\prime },x^{\prime \prime }\in \mathbb {R}_{++}, \nonumber \\\end{aligned}$$
(A.7)
$$\begin{aligned} \left| \sigma \left( \lambda x^{\prime }+(1-\lambda )x^{\prime \prime }\right) -\lambda \sigma (x^{\prime }) -(1-\lambda ) \sigma (x^{\prime \prime })\right|\le & {} \tilde{ L}_\sigma \lambda (1-\lambda )|x^{\prime }-x^{\prime \prime }|^2 \quad \forall x^{\prime },x^{\prime \prime }\in \mathbb {R}_{++}, \nonumber \\ \end{aligned}$$
(A.8)

where \(\tilde{L}_b, \tilde{L}_\sigma \) are as in Assumption 2.1. Then, by using (A.7) and (A.8) in (A.6), we get

$$\begin{aligned} \mathbb {E} \left[ \left| X^{z_\lambda ,I}_s-\Sigma ^{\lambda ,x,y,I}_s\right| ^2 \right] \le&2\left( L_b+L_\sigma ^2 \right) \int _0^t \mathbb {E} \left[ \left| X^{z_\lambda ,I}_u-\Sigma ^{\lambda ,x,y,I}_u\right| ^2 \right] du\nonumber \\&+ 2\lambda (1-\lambda ) \tilde{ L}_b \int _0^t \mathbb {E} \left[ \left| X^{z_\lambda ,I}_u-\Sigma ^{\lambda ,x,y,I}_u\right| \cdot \left| X^{x,I}_u - X^{y,I}_u \right| ^2 \right] du\nonumber \\&+ 2 \lambda ^2(1-\lambda )^2 \tilde{ L}_\sigma ^2 \int _0^t \mathbb {E} \left[ \left| X^{x,I}_u -X^{y,I}_u \right| ^4 \right] du. \end{aligned}$$
(A.9)

Using the inequality

$$\begin{aligned} 2\lambda (1-\lambda ) ab \le a^2 + {\lambda ^2(1-\lambda )^2}b^{2} \quad \forall a,b\in \mathbb {R}, \end{aligned}$$

and (A.4) into (A.9), we obtain

$$\begin{aligned} \mathbb {E} \left[ \left| X^{z_\lambda ,I}_t-\Sigma ^{\lambda ,x,y,I}_t\right| ^2 \right] \le&\left( 2L_b+2L_\sigma ^2 +\tilde{L}_b\right) \int _0^t \mathbb {E} \left[ \left| X^{z_\lambda ,I}_u-\Sigma ^{\lambda ,x,y,I}_u\right| ^2 \right] du\\&+ \lambda ^2(1-\lambda )^2 \left( \tilde{L}_b+2\tilde{ L}_\sigma ^2\right) \int _0^t \mathbb {E} \left[ \left| X^{x,I}_u -X^{y,I}_u \right| ^4 \right] du\\ \le&\left( 2L_b+2L_\sigma ^2 +\tilde{L}_b\right) \int _0^t \mathbb {E} \left[ \left| X^{z_\lambda ,I}_u-\Sigma ^{\lambda ,x,y,I}_u\right| ^2 \right] du\\&+ (\tilde{L}_b+2\tilde{ L}_\sigma ^2) \lambda ^2(1-\lambda )^2 \int _0^t e^{C_0u} |x-y|^4 du\\ \le&\left( 2L_b+2L_\sigma ^2+\tilde{L}_b \right) \int _0^t \mathbb {E} \left[ \left| X^{z_\lambda ,I}_u-\Sigma ^{\lambda ,x,y,I}_u\right| ^2 \right] du\\&+ \frac{\tilde{L}_b+2\tilde{ L}_\sigma ^2}{C_0}\left( e^{C_0t}-1\right) \lambda ^2(1-\lambda )^2|x-y|^4, \end{aligned}$$

where \(C_0\) is the constant of (A.4). We conclude by Gronwall’s inequality. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Federico, S., Rosestolato, M. & Tacconi, E. Irreversible investment with fixed adjustment costs: a stochastic impulse control approach. Math Finan Econ 13, 579–616 (2019). https://doi.org/10.1007/s11579-019-00238-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-019-00238-w

Keywords

AMS Subject Classification

JEL Classification

Navigation