Skip to main content
Log in

Filter bank temporally local canonical correlation analysis for short time window SSVEPs classification

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Canonical correlation analysis (CCA) method and its extended methods have been widely and successfully applied to the frequency recognition in SSVEP-based BCI systems. As a state-of-the-art extended method, filter bank canonical correlation analysis has higher accuracy and information transmission rate (ITR) than CCA. However, in the CCA method, the temporally local structure of samples has not been well considered. In this correspondence, we proposed termed temporally local canonical correlation analysis (TCCA). In this new method, the original covariance matrix was replaced by the temporally local covariance matrix. Furthermore, we proposed an improved frequency identification method of filter bank based on TCCA, named filter bank temporally local canonical correlation analysis (FBTCCA). In the offline environment, we used a leave-one-subject-out validation strategy on datasets of ten testees to optimize the parameters of TCCA and FBTCCA and evaluate the two algorithms. The experimental results affirm that TCCA markedly outperformed CCA, and FBTCCA obtained the highest accuracy among the four methods. This study corroborates that TCCA-based approaches have great potential for implementing short time window SSVEP-based BCI systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bakardjian H, Tanaka T, Cichocki A (2010) Optimization of SSVEP brain responses with application to eight-command brain–computer interface. Neurosci Lett 469:34–38

    Article  CAS  Google Scholar 

  • Chang MH, Lee JS, Heo J, Park KS (2016) Eliciting dual-frequency ssvep using a hybrid ssvep-p300 bci. J Neurosci Methods 258:104–113

    Article  Google Scholar 

  • Chaudhary U, Birbaumer N, Ramos-Murguialday A (2016) Brain–computer interfaces for communication and rehabilitation. Nat Rev Neurol 12:513

    Article  Google Scholar 

  • Chen X, Wang Y, Gao S, Jung TP, Gao X (2015a) Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface. J Neural Eng 12:046008

    Article  Google Scholar 

  • Chen X, Wang Y, Nakanishi M, Gao X, Jung TP, Gao S (2015b) High-speed spelling with a noninvasive brain–computer interface. Proc Nat Acad Sci 112:E6058–E6067

    Article  CAS  Google Scholar 

  • Chen X, Wang ZJ, McKeown M (2016) Joint blind source separation for neurophysiological data analysis: multiset and multimodal methods. IEEE Signal Process Mag 33:86–107

    Article  Google Scholar 

  • Cheng M, Gao X, Gao S, Xu D (2002) Design and implementation of a brain–computer interface with high transfer rates. IEEE Trans Biomed Eng 49:1181–1186

    Article  Google Scholar 

  • Dai Y, Wang X, Li X, Tan Y (2015) Sparse EEG compressive sensing for web-enabled person identification. Measurement 74:11–20

    Article  Google Scholar 

  • Feng J, Yin E, Jin J, Saab R, Daly I, Wang X, Hu D, Cichocki A (2018) Towards correlation-based time window selection method for motor imagery BCIS. Neural Netw 102:87–95

    Article  Google Scholar 

  • Gao S, Wang Y, Gao X, Hong B (2014) Visual and auditory brain–computer interfaces. IEEE Trans Biomed Eng 61:1436–1447

    Article  Google Scholar 

  • He B, Baxter B, Edelman BJ, Cline CC, Wenjing WY (2015) Noninvasive brain–computer interfaces based on sensorimotor rhythms. Proc IEEE 103:907–925

    Article  Google Scholar 

  • Herrmann CS (2001) Human eeg responses to 1–100 hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp Brain Res 137:346–353

    Article  CAS  Google Scholar 

  • Hwang HJ, Lim JH, Jung YJ, Choi H, Lee SW, Im CH (2012) Development of an SSVEP-based BCI spelling system adopting a qwerty-style led keyboard. J Neurosci Methods 208:59–65

    Article  Google Scholar 

  • Hwang J, Nam K, Jang D, Kim I (2017) Effects of spectral smearing of stimuli on the performance of auditory steady-state response-based brain–computer interface. Cogn Neurodyn 11(6):515–527

    Article  Google Scholar 

  • Jiao Y, Zhang Y, Wang Y, Wang B, Jin J, Wang X (2018) A novel multilayer correlation maximization model for improving CCA-based frequency recognition in SSVEP brain–computer interface. Int J Neural Syst 28:1750039

    Article  Google Scholar 

  • Lance BJ, Kerick SE, Ries AJ, Oie KS, McDowell K (2012) Brain–computer interface technologies in the coming decades. Proc IEEE 100:1585–1599

    Article  CAS  Google Scholar 

  • Lay-Ekuakille A, Vergallo P, Griffo G, Conversano F, Casciaro S, Urooj S, Bhateja V, Trabacca A (2013) Entropy index in quantitative EEG measurement for diagnosis accuracy. IEEE Trans Instrum Meas 63:1440–1450

    Article  Google Scholar 

  • Lin Z, Zhang C, Wu W, Gao X (2006) Frequency recognition based on canonical correlation analysis for SSVEP-based bcis. IEEE Trans Biomed Eng 53:2610–2614

    Article  Google Scholar 

  • Miao Y, Yin E, Allison BZ, Zhang Y, Chen Y, Dong Y, Wang X, Hu D, Chchocki A, Jin J (2020) An ERP-based BCI with peripheral stimuli: validation with ALS patients. Cogn Neurodyn 14(1):21–33

    Article  Google Scholar 

  • Muller KR, Anderson CW, Birch GE (2003) Linear and nonlinear methods for brain–computer interfaces. IEEE Trans Neural Syst Rehabil Eng 11:165–169

    Article  Google Scholar 

  • Nakanishi M, Wang Y, Wang YT, Jung TP (2015) A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials. PLoS ONE 10:e0140703

    Article  Google Scholar 

  • Poryzala P, Materka A (2014) Cluster analysis of CCA coefficients for robust detection of the asynchronous SSVEPS in brain–computer interfaces. Biomed Signal Process Control 10:201–208

    Article  Google Scholar 

  • Wang H (2010) Temporally local maximum signal fraction analysis for artifact removal from biomedical signals. IEEE Trans Signal Process 58:4919–4925

    Article  Google Scholar 

  • Wang H, Xu D (2012) Comprehensive common spatial patterns with temporal structure information of EEG data: minimizing nontask related EEG component. IEEE Trans Biomed Eng 59:2496–2505

    Article  Google Scholar 

  • Wang H, Zhang Y et al (2016) Detection of motor imagery EEG signals employing naïve bayes based learning process. Measurement 86:148–158

    Article  Google Scholar 

  • Wang Y, Gao X, Hong B, Jia C, Gao S (2008) Brain–computer interfaces based on visual evoked potentials. IEEE Eng Med Biol Mag 27:64–71

    Article  CAS  Google Scholar 

  • Yin E, Zhou Z, Jiang J, Yu Y, Hu D (2014) A dynamically optimized SSVEP brain–computer interface (BCI) speller. IEEE Trans Biomed Eng 62:1447–1456

    Article  Google Scholar 

  • Yuan P, Chen X, Wang Y, Gao X, Gao S (2015) Enhancing performances of SSVEP-based brain–computer interfaces via exploiting inter-subject information. J Neural Eng 12:046006

    Article  Google Scholar 

  • Zhang R, Xu P, Liu T, Zhang Y, Guo L, Li P, Yao D (2013a) Local temporal correlation common spatial patterns for single trial EEG classification during motor imagery. Comput Math Methods Med 2013:591216

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhou G, Jin J, Wang M, Wang X, Cichocki A (2013b) L1-regularized multiway canonical correlation analysis for SSVEP-based BCI. IEEE Trans Neural Syst Rehabil Eng 21:887–896

    Article  CAS  Google Scholar 

  • Zhang Y, Dong L, Zhang R, Yao D, Zhang Y, Xu P (2014a) An efficient frequency recognition method based on likelihood ratio test for SSVEP-based BCI. Comput Math Methods Med 2014:908719

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xu P, Cheng K, Yao D (2014b) Multivariate synchronization index for frequency recognition of SSVEP-based brain–computer interface. J Neurosci Methods 221:32–40

    Article  Google Scholar 

  • Zhang Y, Zhou G, Jin J, Wang X, Cichocki A (2014c) Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis. Int J Neural Syst 24:1450013

    Article  Google Scholar 

  • Zhang Y, Zhou G, Jin J, Wang X, Cichocki A (2015) Ssvep recognition using common feature analysis in brain–computer interface. J Neurosci Methods 244:8–15

    Article  Google Scholar 

  • Zhang Y, Guo D, Xu P, Zhang Y, Yao D (2016) Robust frequency recognition for SSVEP-based BCI with temporally local multivariate synchronization index. Cogn Neurodyn 10:505–511

    Article  Google Scholar 

  • Zhang Y, Wang Y, Jin J, Wang X (2017) Sparse bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification. Int J Neural Syst 27:1650032

    Article  Google Scholar 

  • Zhang Y, Yin E, Li F, Zhang Y, Tanaka T, Zhao Q, Cui Y, Xu P, Yao D, Guo D (2018) Two-stage frequency recognition method based on correlated component analysis for SSVEP-based BCI. IEEE Trans Neural Syst Rehabil Eng 26:1314–1323

    Article  Google Scholar 

Download references

Acknowledgements

Thanks for the support of science and Technology Department of Shandong Province (2017GGX30103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxing Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, X., Lin, M. Filter bank temporally local canonical correlation analysis for short time window SSVEPs classification. Cogn Neurodyn 14, 689–696 (2020). https://doi.org/10.1007/s11571-020-09620-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-020-09620-7

Keywords

Navigation