Skip to main content

Advertisement

Log in

Dynamics analysis of the hippocampal neuronal model subjected to cholinergic action related with Alzheimer’s disease

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

There are evidences that the region of hippocampus is affected in the early stage of Alzheimer’s disease (AD). Moreover, the hippocampal pyramidal neurons receive cholinergic input from the medial septum. Thus, this study, based on the results of electrophysiological experiments, first constructs a modified hippocampal CA1 pyramidal neuronal model by introducing two new currents of M-current and calcium ion-activated potassium ion current to depict the cholinergic input receiving from the medial septum, and then explores how acetylcholine deficiency and beta-amyloid accumulation under the pathological condition of AD influence the neuronal dynamics in terms of theta band power and spiking frequency using computational approach. By simulating acetylcholine potentiated M-current and calcium ion-activated potassium ion current, numerical results reveal that the relative theta band power increases significantly and the firing rate decreases obviously when acetylcholine is deficient. Similarly, by simulating beta-amyloid enhanced delay rectification potassium ion current, we also detect that the relative theta band power increases as well as the firing rate decreases remarkably as beta-amyloid is accumulated. In addition, the mechanism underlying these dynamical changes in theta rhythm and firing behavior is investigated by nonlinear behavioral analysis, which demonstrates that both deficiency in acetylcholine and accumulation in beta-amyloid can promote the emergence of stable equilibrium state in this modified hippocampal neuronal model. Note that acetylcholine deficiency together with beta-amyloid deposition plays key role in the pathogenesis of AD. We expect these findings could have important implications on better understanding pathogenesis and expounding potential biomarkers for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Adams PR, Brown DA, Constanti A (1982) Pharmacological inhibition of the M-current. J Physiol 332:223–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adeli H, Ghosh-Dastidar S, Dadmehr N (2005) Alzheimer’s disease and models of computation: imaging, classification and neural models. J Alzheimer’s Dis 7:187–199

    Article  Google Scholar 

  • Ashenafi S, Fuente A, Criado JM, Riolobos AS, Heredia M, Yajeya J (2005) β-Amyloid peptide 25–35 depresses excitatory synaptic transmission in the rat basolateral amygdala “in vitro”. Neurobiol Aging 26:419–428

    Article  CAS  PubMed  Google Scholar 

  • Basso M, Yang J, Warren L, MacAvoy MG, Varma P, Bronen RA, van Dyck CH (2006) Volumetry of amygdala and hippocampus and memory performance in Alzheimer’s disease. Psychiatry Res 146:251–261

    Article  PubMed  Google Scholar 

  • Benardo LS, Prince DA (1982) Ionic mechanisms of cholinergic excitation in mammalian hippocampal pyramidal cells. Brain Res 249:333–344

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E, Bohl J, Bratzke H (1998) Evolution of Alzheimer’s disease related cortical lesions. J Neural Transm Suppl 54:97–106

    Article  CAS  PubMed  Google Scholar 

  • Cavedo E, Grothe MJ, Colliot O, Lista S, Chupin M, Dormont D, Houot M, Lehericy S, Teipel S, Dubois B, Hampel H (2017) Reduced basal forebrain atrophy progression in a randomized Donepezil trail in prodromal Alzheimer’s disease. Sci Rep 7:11706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiaramonti R, Muscas GC, Paganini M, Muller TJ, Fallgatter AJ, Versari A, Strik WK (1997) Correlations of topographical EEG features with clinical severity in mild and moderate dementia of Alzheimer type. Neuropsychobiology 36:153–158

    Article  CAS  PubMed  Google Scholar 

  • Cole AE, Nicoll RA (1984) Characterization of a slow cholinergic post-synaptic potential recorded in vitro from rat hippocampal pyramidal cells. J Physiol 352:173–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson RM, Shajenko L, Donta TS (1994) Amyloid beta-peptide potentiates a nimodipine-sensitive L-type barium conductance in N1E−115 neuroblastoma cells. Brain Res 643:324–327

    Article  CAS  PubMed  Google Scholar 

  • Donnelly DF (2013) Voltage-gated Na+ channels in chemoreceptor afferent neurons-potential roles and changes with development. Respir Physiol Neurobiol 185:67–74

    Article  CAS  PubMed  Google Scholar 

  • Drachman DA, Leavitt J (1974) Human memory and the cholinergic system. Arch Neurol 30:113–121

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Barger SW, Blalock EM, Mattsor MP (1996) Activation of K+ channels a suppression of neuronal activity by secreted by beta amyloid-precursor protein. Nature 379:74–78

    Article  CAS  PubMed  Google Scholar 

  • Golomb D, Yue C, Yaari Y (2006) Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells combined experimental and modeling study. J Neurophysiol 96:1912–1926

    Article  CAS  PubMed  Google Scholar 

  • Greget R, Dadak S, Barbier L, Lauga F, Linossier-Pierre S, Pernot F, Legendre A, Ambert N, Bouteiller JM, Dorandeu F, Bischoff S, Baudry M, Fagni L, Moussaoui S (2016) Modeling and simulation of organophosphate-induced neurotoxicity: prediction and validation by experimental studies. Neurotoxicology 54:140–152

    Article  CAS  PubMed  Google Scholar 

  • Gron G, Brandenburg I, Wunderlich AP, Riepe MW (2006) Inhibition of hippocampal function in mild cognitive impairment: targeting the cholinergic hypothesis. Neurobiol Aging 27(1):78–87

    Article  CAS  PubMed  Google Scholar 

  • Grothe M, Heinsen H, Teipel S (2013) Longitudinal measures of cholinergic forebrain atrophy in the transition from healthy aging to Alzheimer’s disease. Neurobiol Aging 34:1210–1220

    Article  CAS  PubMed  Google Scholar 

  • Hajós M, Hoffmann WE, Orbán G, Kiss T, Érdi P (2004) Modulation of septo-hippocampal theta activity by GABAA receptors: an experimental and computational approach. Neuroscience 126:599–610

    Article  PubMed  CAS  Google Scholar 

  • Halliwell JV, Adams PR (1982) Votage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250:71–92

    Article  CAS  PubMed  Google Scholar 

  • Hampel H, Mesulam MM, Cuello AC, Khachaturian AS, Vergallo A, Farlow MR, Snyder PJ, Giacobini E, Khachaturian ZS (2019) Revisiting the cholinergic hypothesis in Alzheimer’s disease: emerging evidence from translational and clinical research. J Prev Alzheimer’s Dis 1(6):2–15

    Google Scholar 

  • Hara Y, Motoi Y, Hikishima K, Mizuma H, Onoe H, Matsumoto SE, Elahi M, Okano H, Aoki S, Hattori N (2017) Involvement of the septo-hippocampal cholinergic pathway in association with septal acetylcholinesterase upregulation in a mouse model of tauopathy. Curr Alzheimer Res 14(1):94–103

    Article  CAS  PubMed  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16:710–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Peng Y, Gao H (2012) Study on reduction algorithm in hippocampal neuron complex model. In: The 2012 8th international conference on natural computation, pp 178–182

  • Ihl R, Dierks T, Martin EM, Froolich L, Maurer K (1996) Topography of the maximum of the amplitude of EEG frequency bands in dementia of the Alzheimer type. Biol Psychiatry 39:319–325

    Article  CAS  PubMed  Google Scholar 

  • Lewis PR, Shute CC (1967) The cholinergic limbic system: projections to hippocampal formation, medisl cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest. Brain 90:521–540

    Article  CAS  PubMed  Google Scholar 

  • Lewis PR, Shute CC, Silver A (1967) Comfirmation from choline acetylase analyses of a massive cholinergic innervation to the rat hippocampus. J Physiol 191:215–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Coyle D, Maguire L, Watson DR, McGinnity TM (2010) Gray matter concentration and effective connectivity changes in Alzheimer’s disease: a longitudinal structural MRI study. Neuroradiology 53:733–748

    Article  PubMed  Google Scholar 

  • Liu X, Zhang C, Ji Z, Ma Y, Shang X, Zhang Q, Zheng W, Li X, Gao J, Wang R, Wang J, Yu H (2016) Multiple characteristics analysis of Alzheimer’s electroencephalogram by power spectral density and Lempel–Ziv complexity. Cogn Neurodyn 10:121–133

    Article  PubMed  Google Scholar 

  • Madison DV, Lancaster B, Nicoll RA (1987) Voltage clamp analysis of cholinergic action in the hippocampus. J Neurosci 7:733–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menschik ED, Finkel LH (2000) Cholinergic neuromodulation of an anatomically reconstructed hippocampal CA3 pyramidal cell. Neurocomputing 32–33:197–205

    Article  Google Scholar 

  • Nilsson L, Nordberg A, Hardy J, Wester P, Winblad B (1986) Physostigmine restores 3H-acetylcholine efflux from Alzheimer brain slices to normal level. J Neural Transm 67:275–285

    Article  CAS  PubMed  Google Scholar 

  • Nobukawa S, Yamanishi T, Nishimura H, Wada Y, Kikuchi M, Takahashi T (2019) Atypical temporal-scale-specific fractal changes in Alzheimer’s disease EEG and their relevance to cognitive decline. Cogn Neurodyn 13:1–11

    Article  PubMed  Google Scholar 

  • Pan Y (2004) Alterations of potassium channels in rat brain with β-amyloid peptide impairment and studies of potassium channel regulators. Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing

    Google Scholar 

  • Peng Y (2011) Study on dynamic characteristics of the hippocampal neuron under current stimulation. Adv Mater Res 341–342:350–354

    Article  Google Scholar 

  • Peng Y (2015) Study on the complex neuron model’s reduction and its dynamic characteristics. Int J Nonlinear Sci Numer 16:129–139

    Article  Google Scholar 

  • Peng Y, Wang J, Zheng C (2016) Study on dynamic characteristics’ change of hippocampal neuron reduced models caused by the Alzheimer’s disease. J Biol Dyn 10:250–262

    Article  PubMed  Google Scholar 

  • Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J 2(6150):1457–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponomareva NV, Korovaitseva GI, Rogaev EI (2008) EEG alterations in non-demented individuals related to apolipoprotein E genotype and to risk of Alzheimer’s disease. Neurobiol Aging 29:819–827

    Article  CAS  PubMed  Google Scholar 

  • Qi JS, Qiao JT (2001) Suppression of large conductance Ca2+-activated K+ channels by amyloid beta-protein fragment 31–35 in membrane patches excised from hippocampal neurons. Sheng Li Xue Bao 53:198–204

    CAS  PubMed  Google Scholar 

  • Ramsden M, Plant LD, Webster NJ, Vaughan PF, Henderson Z, Pearson HA (2001) Different effects of unaggregated and aggregated amyloid beta protein (1-40) on K+ channel currents in cultures of rat cerebellar granule and cortical neurons. J Neurochem 79:699–712

    Article  CAS  PubMed  Google Scholar 

  • Robbe D, Buzsaki G (2009) Alteration of theta timescale dynamics of hippocampal place cells by a cannabinoid is associated with memory impairment. J Neurosci 29:12597–12605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarter M, Hasselmo ME, Bruno JP, Givens B (2005) Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Rev 48:98–111

    Article  CAS  PubMed  Google Scholar 

  • Sen-Bhattacharya B, Serap-Sengor N, Cakir Y, Maguire L, Coyle D (2014) Spectral and non-linear analysis of thalamocortical neural mass model oscillatory dynamics. In: Advanced computational approaches to biomedical engineering, pp 87–112

  • Shah MM, Migliore M, Valencia I, Cooper EC, Brown DA (2008) Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. Proc Natl Acad Sci USA 105:7869–7874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sims NR, Bowen DM, Smith CC, Flack RH, Davison AN, Snowden JS, Neary D (1980) Glucose metabolism and acetylcholine synthesis in relation to neuronal activity in Alzheimer’s disease. Lancet 1(8164):333–336

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Wang J, Yu H, Wei X, Yang C, Deng B (2015) Power spectral density and coherence analysis of Alzheimer’s EEG. Cogn Neurodyn 9:291–304

    Article  PubMed  Google Scholar 

  • Webster NJ, Ramsden M, Boyle JP, Pearson HA, Peers C (2006) Amyloid peptides mediate hypoxic increase of L-type Ca2+ channels in central neurons. Neurobiol Aging 27:439–445

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR (1982) Alzheimer’s disease and senile dementia: loss of neurones in basal forebrain. Science 217:408–417

    Article  Google Scholar 

  • Zou X, Coyle D, Wong-Lin K, Maguire L (2011) Computational study of hippocampal-septal theta rhythm changes due to beta-amyloid-altered ionic channels. PLoS One 6(6):e21597

    Article  CAS  Google Scholar 

  • Zou X, Coyle D, Wong-Lin K, Maguire L (2012) Beta-amyloid changes in A-type K+ current can alter hippocampo-septal network dynamics. J Comput Neurosci 32:465–477

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 11972217, 11572180), the Fundamental Funds Research for the Central Universities (Grant Nos. GK201901008, GK201701001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoLi Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The present modified hippocampal pyramidal neuronal mathematical model is described by the following differential equation:

$$ C\frac{dV}{dt} = - I_{L} - I_{Na} - I_{K} - I_{M} - I_{AHP} - I_{A} + I $$
(2)

where \( C \) is the membrane capacitance, \( V \) is the membrane potential, \( I_{L} \) is the leakage current, \( I_{Na} \) is the transient \( Na^{ + } \) current, \( I_{K} \) is the delay rectification \( K^{ + } \) current, \( I_{A} \) is the A-type instantaneous \( K^{ + } \) current, \( I_{M} \) is the muscarine-sensitive \( K^{ + } \) current, \( I_{AHP} \) is the calcium ion-activated potassium ion current and \( I \) is the stimulation current.

All of the above ionic currents are modelled by the Hodgkin–Huxley type, thus the gating variable \( x \) satisfies the following first-order kinetics (\( x \) can be \( h \), \( n \), \( z \), \( r \) and \( b \)):

$$ \frac{dx}{dt} = \varphi_{x} \frac{{x_{\infty } (V) - x}}{{\tau_{x} }}. $$
(3)

The model (2) has eight variables, which are the membrane potential variable \( V \), transient \( Na^{ + } \) current inactivation variable \( h \), delayed rectified \( K^{ + } \) current activation variable \( n \), A-type instantaneous \( K^{ + } \) current inactivation variable \( b \), muscarine-sensitive \( K^{ + } \) current activated variable \( z \), high-threshold \( Ca^{2 + } \) current-activated variable \( r \), calcium ion-activated potassium ion current-activated variable \( q \) and intramembrane calcium ion concentration variable \( [Ca^{2 + } ]_{i} \). The activation gate variables \( m \) and \( a \) are replaced by activation curves \( m_{\infty } (V) \) and \( a_{\infty } (V) \), respectively. \( h_{\infty } \), \( r_{\infty } \) and \( b_{\infty } \) stand for activation curves of activation gate variables \( h \), \( r \) and \( b \), respectively. \( n_{\infty } \), \( z_{\infty } \) and \( q_{\infty } \) stand for inactivation curves of inactivation gate variables \( n \), \( z \) and \( q \), respectively. For numerical simulation the parameters are selected as follows: \( C = 1\upmu {{\rm F/cm}}^{2} \), \( g_{L} = 0.05\,{{\rm mS/cm}}^{2} \), \( E_{L} = - 60\,{{\rm mV}} \), \( \varphi = 1 \), \( g_{Na} = 35\,{{\rm mS/cm}}^{2} \), \( g_{K} = 10\,{{\rm mS/cm}}^{2} \), \( g_{M} = 0.1\,{{\rm mS/cm}}^{2} \), \( g_{AHP} = 0.15\,{{\rm mS/cm}}^{2} \), \( g_{A} = 1\,{{\rm mS/cm}}^{2} \); \( E_{Na} = 55\,{{\rm mV}} \), \( E_{K} = - 90\,{{\rm mV}} \). Without loss of generality, in the modified model (2) the state variable \( V \), \( h \), \( n \), \( z \), \( r \), \( [Ca^{2 + } ]_{i} \), \( q \) and \( b \) are initially set as \( V = - 65\,{{\rm mV}} \), \( h = 0.1 \), \( n = 0.1 \), \( z = 0.1 \), \( r = 0.1 \), \( [Ca^{2 + } ]_{i} = 0.05 \), \( q = 0.1 \), \( b = 0.1 \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, P., Yang, X. & Sun, Z. Dynamics analysis of the hippocampal neuronal model subjected to cholinergic action related with Alzheimer’s disease. Cogn Neurodyn 14, 483–500 (2020). https://doi.org/10.1007/s11571-020-09586-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-020-09586-6

Keywords

Navigation