Skip to main content
Log in

Temperature effect on memristive ion channels

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Neuron shows distinct dependence of electrical activities on membrane patch temperature, and the mode transition of electrical activity is induced by the patch temperature through modulating the opening and closing rates of ion channels. In this paper, inspired by the physical effect of memristor, the potassium and sodium ion channels embedded in the membrane patch are updated by using memristor-based voltage gate variables, and an external stimulus is applied to detect the variety of mode selection in electrical activities under different patch temperatures. It is found that each ion channel can be regarded as a physical memristor, and the shape of pinched hysteresis loop of memristor is dependent on both input voltage and patch temperature. The pinched hysteresis loops of two ion-channel memristors are dramatically enlarged by increasing patch temperature, and the hysteresis lobe areas are monotonously reduced with the increasing of excitation frequency if the frequency of external stimulus exceeds certain threshold. However, for the memristive potassium channel, the AREA1 corresponding to the threshold frequency is increased with the increasing of patch temperature. The amplitude of conductance for two ion-channel memristors depends on the variation of patch temperature. The results of this paper might provide insights to modulate the neural activities in appropriate temperature condition completely, and involvement of external stimulus enhance the effect of patch temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adhikari SP, Sah PdM, Kim H, Chua L (2013) Three fingerprints of memristor. IEEE Trans Circuits-I 60(11):3008–3021

    Article  Google Scholar 

  • Bao B, Hu A, Bao H, Xu Q, Chen M, Wu H (2018) Three-dimensional memristive Hindmarsh–Rose neuron model with hidden coexisting asymmetric behaviors. Complexity. Article ID 3872573

  • Biolek Z, Biolek D, Biolkova V (2012) Computation of the area of memristor pinched hysteresis loop. IEEE Trans Circuits-II 59(9):670–671

    Google Scholar 

  • Chua L (2015) Everything you wish to know about memristor but are afraid to ask. Radioengin 24(2):319–368

    Article  Google Scholar 

  • Chua L, Kang SM (1976) Memristive devices and systems. Proc IEEE 64(2):209

    Article  Google Scholar 

  • Chua L, Sbitnev V, Kim H (2012) Hodgkin–Huxley axon is made of memristors. Int J Bifurc Chaos 22(3):1230011

    Article  Google Scholar 

  • Correa AM, Bezanilla F, Latorre R (1992) Gating kinetics of batrachotoxin-modified Na + channels in the squid giant axon voltage and temperature effects. Biophys J 61(5):1332–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge M, Jia Y, John BK, Xu Y, Shen J, Lu L, Liu Y, Pei Q, Zhan X, Yang L (2018) Propagation of firing rate by synchronization in a feed-forward multilayer Hindmarsh–Rose neural network. Neurocomputing 320:60–68

    Article  Google Scholar 

  • Ge M, Jia Y, Xu Y, Lu L, Wang H, Zhao Y (2019) Wave propagation and synchronization induced by chemical autapse in chain feed-forward Hindmarsh–Rose neural network. Appl Math Comput 352:136–145

    Google Scholar 

  • Guo D, Perc M, Zhang Y (2017) Frequency-difference dependent stochastic resonance in neural systems. Phys Rev E 96(2):022415

    Article  PubMed  Google Scholar 

  • Guo D, Gan J, Tan T, Tian X, Wang G, Tak-Pan Ng K (2018) Neonatal exposure of ketamine inhibited the induction of hippocampal long-term potentiation without impairing the spatial memory of adult rats. Cogn Neurodyn 12:377–383

    Article  PubMed  PubMed Central  Google Scholar 

  • Hindmarsh JL, Rose RM (1982) A model of the nerve impulse using two first-order differential equations. Nature 296(5853):162–164

    Article  CAS  PubMed  Google Scholar 

  • Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B 221(1222):87–102

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol 116(4):497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyun NG, Hyun KH, Hyun KB, Han JH, Lee K, Kaang BK (2011) A computational model of the temperature-dependent changes in firing patterns in aplysia neurons. Korean J Physiol Pharmacol 15(6):371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji X, Hu X, Zhou Y, Dong Z, Duan S (2019) Adaptive sparse coding based on memristive neural network with applications. Cogn Neurodyn. https://doi.org/10.1007/s11571-019-09537-w

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia B, Gu H, Xue L (2017) A basic bifurcation structure from bursting to spiking of injured nerve fibers in a two-dimensional parameter space. Cogn Neurodyn 11(2):189–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu L, Jia Y, Xu Y, Ge M, Pei Q, Yang L (2019a) Energy dependence on modes of electric activities of neuron driven by different external mixed signals under electromagnetic induction. Sci China Technol Sci 62(3):427–440

    Article  Google Scholar 

  • Lu L, Jia Y, Kirunda JB, Xu Y, Ge M, Pei Q, Yang L (2019b) Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network. Nonlinear Dyn 95(2):1673–1686

    Article  Google Scholar 

  • Ma J, Huang L, Tang J, Ying H, Jin W (2012) Spiral wave death, breakup induced by ion channel poisoning on regular Hodgkin–Huxley neuronal networks. Commun Nonlinear Sci 17(11):4281–4293

    Article  Google Scholar 

  • Ma J, Zhang G, Hayat T, Ren G (2019) Model electrical activity of neuron under electric field. Nonlinear Dyn 95:1585–1598

    Article  Google Scholar 

  • Maio VD, Santillo S, Sorgente A, Vanacore P, Ventriglia F (2018) Influence of active synaptic pools on the single synaptic event. Cogn Neurodyn 12:391–402

    Article  PubMed  PubMed Central  Google Scholar 

  • Micheva KD, Smith SJ (2005) Strong effects of subphysiological temperature on the function and plasticity of mammalian presynaptic terminals. J Neurosci 25(33):7481–7488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal A, Upadhyay RK, Ma J, Yadav BK, Sharma SK, Mondal A (2019) Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cogn Neurodyn. https://doi.org/10.1007/s11571-019-09526-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Nordenfelt A, Used J, Sanjuán MA (2013) Bursting frequency versus phase synchronization in time-delayed neuron networks. Phys Rev E 87(5):052903

    Article  CAS  Google Scholar 

  • Ozer M, Uzuntarla M, Perc M, Grahamc LJ (2009) Spike latency and jitter of neuronal membrane patches with stochastic Hodgkin–Huxley channels. J Theor Biol 261(1):83–92

    Article  CAS  PubMed  Google Scholar 

  • Perc M (2007) Effects of small-world connectivity on noise-induced temporal and spatial order in neural media. Chaos 31(2):280–291

    Google Scholar 

  • Prousalis DA, Volos CK, Stouboulos IN, Kyprianidis IM (2017) Hyperchaotic memristive system with hidden attractors and its adaptive control scheme. Nonlinear Dyn 90(3):1681–1694

    Article  Google Scholar 

  • Rajamani V, Sah MPD, Mannan ZI, Kim H, Chua L (2017) Third-order memristive Morris–Lecar model of barnacle muscle fiber. Int J Bifurc Chaos 27(4):1730015

    Article  Google Scholar 

  • Szabo TM, Brookings T, Preuss T, Faber DS (2008) Effects of temperature acclimation on a central neural circuit and its behavioral output. J Neurophysiol 100(6):2997

    Article  PubMed  PubMed Central  Google Scholar 

  • Thottil SK, Ignatius RP (2016) Nonlinear feedback coupling in Hindmarsh–Rose neurons. Nonlinear Dyn 87(3):1879–1899

    Article  Google Scholar 

  • Tian C, Cao L, Bi H, Xu K, Liu Z (2018) Chimera states in neuronal networks with time delay and electromagnetic induction. Nonlinear Dyn 93(3):1695–1704

    Article  Google Scholar 

  • Volkov AG, Reedus J, Mitchell CM, Tucket C, Forde-Tuckett V, Volkova MI, Markin VS, Chua L (2014) Memristors in the electrical network of Aloe vera L. Plant Signal Behav 9(7):e29056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Jiao X (2006) Stochastic model and neural coding of large-scale neuronal population with variable coupling strength. Neurocomputing 69(7–9):778–785

    Article  CAS  Google Scholar 

  • Wang C, Ma J (2018) A review and guidance for pattern selection in spatiotemporal system. Int J Mod Phys B 32(6):1830003

    Article  Google Scholar 

  • Wang YH, Wang R (2017) An improved neuronal energy model that better captures of dynamic property of neuronal activity. Nonlinear Dyn 91(1):319–327

    Article  Google Scholar 

  • Wang R, Zhang Z (2007) Energy coding in biological neural network. Cogn Neurodyn 1(3):203–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang R, Zhu Y (2016) Can the activities of the large scale cortical network be expressed by neural energy? A brief review. Cogn Neurodyn 10(1):1–5

    Article  PubMed  Google Scholar 

  • Wang Q, Perc M, Duan Z, Chen G (2010) Spatial coherence resonance in delayed in delayed Hodgkin–Huxley neuronal networks. Int J Mod Phys B 24(09):1201–1213

    Article  Google Scholar 

  • Wang Z, Wang R, Fang R (2015) Energy coding in neural network with inhibitory neurons. Cogn Neurodyn 9(2):129–144

    Article  PubMed  Google Scholar 

  • Wang C, Lin Q, Yao Y, Yang K, Tian M, Wang Y (2018) Dynamics of a stochastic system driven by cross-correlated sine-Wiener bounded noises. Nonlinear Dyn. https://doi.org/10.1007/s11071-018-4669-0

    Article  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12(1):1–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Ying H, Jia Y, Ma J, Hayat T (2017) Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci Rep 7:43452

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Jia Y, Ge M, Lu L, Yang L, Zhan X (2018a) Effects of ion channel blocks on electrical activity of stochastic Hodgkin–Huxley neural network under electromagnetic induction. Neurocomputing 283:196–204

    Article  Google Scholar 

  • Xu Y, Jia Y, Kirunda JB, Shen J, Ge M, Lu L, Pei Q (2018b) Dynamic behaviors in coupled neurons system with the excitatory and inhibitory autapse under electromagnetic induction. Complexity 2018:3012743

  • Xu Y, Jia Y, Wang HW, Liu Y, Wang P, Zhao Y (2019) Spiking activities in chain neural network driven by channel noise with field coupling. Nonlinear Dyn 95(4):3237–3247

    Article  Google Scholar 

  • Yang L, Jia Y (2005) Effects of patch temperature on spontaneous action potential train due to channel fluctuations: coherence resonance. Biosystems 81(3):267–280

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Ma J (2018) Weak periodic signal detection by sine-Wiener-noise-induced resonance in the FitzHugh–Nagumo neuron. Cogn Neurodyn 12(3):343–349

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao C, Zhan M, Shuai J, Ma J, Kurths J (2017) Insensitivity of synchronization to network structure in chaotic pendulum systems with time-delay coupling. Chaos 27:126702

    Article  PubMed  Google Scholar 

  • Zhu F, Wang R, Pan X, Zhu Z (2019) Energy expenditure computation of a single bursting neuron. Cogn Neurodyn 13(1):75–78

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Ma, J., Zhan, X. et al. Temperature effect on memristive ion channels. Cogn Neurodyn 13, 601–611 (2019). https://doi.org/10.1007/s11571-019-09547-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-019-09547-8

Keywords

Navigation