Skip to main content
Log in

Role of structural inhomogeneities in resting-state brain dynamics

  • Brief Communication
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Brain imaging methods allow a non-invasive assessment of both structural and functional connectivity. However, the mechanism of how functional connectivity arises in a structured network of interacting neural populations is as yet poorly understood. Here we use a modeling approach to explore the way in which functional correlations arise from underlying structural connections taking into account inhomogeneities in the interactions between the brain regions of interest. The local dynamics of a neural population is assumed to be of phase-oscillator type. The considered structural connectivity patterns describe long-range anatomical connections between interacting neural elements. We find a dependence of the simulated functional connectivity patterns on the parameters governing the dynamics. We calculate graph-theoretic measures of the functional network topology obtained from numerical simulations. The effect of structural inhomogeneities in the coupling term on the observed network state is quantified by examining the relation between simulated and empirical functional connectivity. Importantly, we show that simulated and empirical functional connectivity agree for a narrow range of coupling strengths. We conclude that identification of functional connectivity during rest requires an analysis of the network dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. Technical details on the numerical analysis. The simulations are carried out using the PYTHON module SCIPY. The algorithm used is based on the Bogacki-Shampine method (Boggio et al. 2009) with an adaptive step size for the numerical integration of Eq. (1). This is similar to the ODE23 routine implemented also in MATLAB (Shampine and Reichelt 1997). Initially, at \(t=0\), all phases \(\theta _{i}, i=1,\dots ,N\), are randomly chosen from a uniform distribution.

References

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  CAS  PubMed  Google Scholar 

  • Boggio PS, Amancio EJ, Correa CF, Cecilio S, Valasek C, Bajwa Z, Freedman SD, Pascual-Leone A, Edwards DJ, Fregni F (2009) Transcranial DC stimulation coupled with TENS for the treatment of chronic pain: a preliminary study. Clin J Pain 25(8):691–695

    Article  PubMed  Google Scholar 

  • Breakspear M, Heitmann S, Daffertshofer A (2010) Generative models of cortical oscillations: neurobiological implications of the Kuramoto model. Front Hum Neurosci 4(190):1–14

    Google Scholar 

  • Bullmore ET, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    Article  CAS  PubMed  Google Scholar 

  • Cabral J, Hugues E, Sporns O, Deco G (2011) Role of local network oscillations in resting-state functional connectivity. NeuroImage 57(1):130–139. doi:10.1016/j.neuroimage.2011.04.010

    Article  PubMed  Google Scholar 

  • Cabral J, Kringelbach ML, Deco G (2014) Exploring the network dynamics underlying brain activity during rest. Prog Neurobiol 114:102–131. doi:10.1016/j.pneurobio.2013.12.005

    Article  PubMed  Google Scholar 

  • Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103(37):13848–13853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deco G, Jirsa VK, McIntosh AR (2011) Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci 12(1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Deco G, Jirsa VK, McIntosh AR, Sporns O, Kötter R (2009) Key role of coupling, delay, and noise in resting brain fluctuations. Proc Natl Acad Sci USA 106(25):10302–10307. doi:10.1073/pnas.0901831106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitriadis S, Laskaris N, Micheloyannis S (2015) Transition dynamics of eeg-based network microstates during mental arithmetic and resting wakefulness reflects task-related modulations and developmental changes. Cogn Neurodyn 9:371–387

    Article  CAS  PubMed  Google Scholar 

  • Friston K, Mechelli A, Turner R, Price CJ (2000) Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics. NeuroImage 12(4):466–477

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK (2008) Cortical network dynamics with time delays reveals functional connectivity in the resting brain. Cogn Neurodyn 2(2):115–120. doi:10.1007/s11571-008-9044-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK (2008) Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Comput Biol 4(10):e1000,196. doi:10.1371/journal.pcbi.1000196

    Article  Google Scholar 

  • Hansen EC, Battaglia D, Spiegler A, Deco G, Jirsa VK (2015) Functional connectivity dynamics: modeling the switching behavior of the resting state. NeuroImage 105:525–535

    Article  PubMed  Google Scholar 

  • Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA 106(6):2035–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD (2013) Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage 80:360–378

    Article  PubMed  Google Scholar 

  • Iturria-Medina Y, Sotero RC, Canales-Rodríguez EJ, Alemán-Gómez Y, Melie-García L (2008) Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. NeuroImage 40(3):1064–1076

    Article  PubMed  Google Scholar 

  • Izhikevich EM, Kuramoto Y (2006) Weakly coupled oscillators. Encycl Math Phys 5:448

    Google Scholar 

  • Keane A, Dahms T, Lehnert J, Suryanarayana SA, Hövel P, Schöll E (2012) Synchronisation in networks of delay-coupled type-I excitable systems. Eur Phys J B 85(12):407. doi:10.1140/epjb/e2012-30810-x

    Article  Google Scholar 

  • Leopold DA, Murayama Y, Logothetis NK (2003) Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb Cortex 13(4):422–433

    Article  PubMed  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    Article  CAS  PubMed  Google Scholar 

  • Nicosia V, Valencia M, Chavez M, Díaz-Guilera A, Latora V (2013) Remote synchronization reveals network symmetries and functional modules. Phys Rev Lett 110:174,102. doi:10.1103/physrevlett.110.174102

    Article  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069

    Article  PubMed  Google Scholar 

  • Seth AK, Chorley P, Barnett LC (2013) Granger causality analysis of fmri bold signals is invariant to hemodynamic convolution but not downsampling. Neuroimage 65:540–555

    Article  PubMed  Google Scholar 

  • Shampine LF, Reichelt MW (1997) The Matlab ODE suite. SIAM J Sci Comput 18(1):1–22

    Article  Google Scholar 

  • Shanahan M (2010) Metastable chimera states in community-structured oscillator networks. Chaos 20(1):013,108

    Article  Google Scholar 

  • Strogatz SH (2000) From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys D 143:1–20

    Article  Google Scholar 

  • Tognoli E, Kelso JS (2014) The metastable brain. Neuron 81(1):35–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuksanović V, Hövel P (2014) Functional connectivity of distant cortical regions: role of remote synchronization and symmetry in interactions. NeuroImage 97:1–8. doi:10.1016/j.neuroimage.2014.04.039

    Article  PubMed  Google Scholar 

  • Werner G (2009) Consciousness related neural events viewed as brain state space transitions. Cogn Neurodyn 3(1):83–95

    Article  PubMed  Google Scholar 

  • Zhou Y, Wang K, Liu Y, Song M, Song S, Jiang T (2010) Spontaneous brain activity observed with functional magnetic resonance imaging as a potential biomarker in neuropsychiatric disorders. Cogn Neurodyn 4(4):275–294

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by BMBF (grant no. 01Q1001B) in the framework of BCCN Berlin (Project B7). We thank John-Dylan Haynes and his group for helpful discussions concerning the fMRI data processing and Yasser Iturria-Medina for sharing the dMRI data used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Vuksanović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuksanović, V., Hövel, P. Role of structural inhomogeneities in resting-state brain dynamics. Cogn Neurodyn 10, 361–365 (2016). https://doi.org/10.1007/s11571-016-9381-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-016-9381-5

Keywords

Navigation