Skip to main content
Log in

Default network connectivity decodes brain states with simulated microgravity

Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

With great progress of space navigation technology, it becomes possible to travel beyond Earth’s gravity. So far, it remains unclear whether the human brain can function normally within an environment of microgravity and confinement. Particularly, it is a challenge to figure out some neuroimaging-based markers for rapid screening diagnosis of disrupted brain function in microgravity environment. In this study, a 7-day −6° head down tilt bed rest experiment was used to simulate the microgravity, and twenty healthy male participants underwent resting-state functional magnetic resonance imaging scans at baseline and after the simulated microgravity experiment. We used a multivariate pattern analysis approach to distinguish the brain states with simulated microgravity from normal gravity based on the functional connectivity within the default network, resulting in an accuracy of no less than 85 % via cross-validation. Moreover, most discriminative functional connections were mainly located between the limbic system and cortical areas and were enhanced after simulated microgravity, implying a self-adaption or compensatory enhancement to fulfill the need of complex demand in spatial navigation and motor control functions in microgravity environment. Overall, the findings suggest that the brain states in microgravity are likely different from those in normal gravity and that brain connectome could act as a biomarker to indicate the brain state in microgravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aggleton JP, Poirier GL, Aggleton HS, Vann SD, Pearce JM (2009) Lesions of the fornix and anterior thalamic nuclei dissociate different aspects of hippocampal-dependent spatial learning: implications for the neural basis of scene learning. Behav Neurosci 123:504–519

    Article  PubMed  Google Scholar 

  • Aguirre GK, D’Esposito M (1999) Topographical disorientation: a synthesis and taxonomy. Brain 122:1613–1628

    Article  PubMed  Google Scholar 

  • Aguirre GK, Detre JA, Alsop DC, D’Esposito M (1996) The parahippocampus subserves topographical learning in man. Cereb Cortex 6:823–829

    Article  CAS  PubMed  Google Scholar 

  • Alexander WH, Brown JW (2011) Medial prefrontal cortex as an action-outcome predictor. Nat Neurosci 14:1338–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen RA (2011) Inferior parietal lobule function in spatial perception and visuomotor integration. Compr Physiol. doi:10.1002/cphy.cp010512

    Google Scholar 

  • Annett M (1970) A classification of hand preference by association analysis. Br J Psychol 61:303–321

    Article  CAS  PubMed  Google Scholar 

  • Baisch F, Beck L, Karemaker J, Arbeille P, Gaffney F (1992) Head-down tilt bedrest HDT’88-an international collaborative effort in integrated systems physiology. Acta Physiol Scand 144:1–12

    Article  Google Scholar 

  • Bar M (2004) Visual objects in context. Nat Rev Neurosci 5:617–629

    Article  CAS  PubMed  Google Scholar 

  • Borra E, Gerbella M, Rozzi S, Tonelli S, Luppino G (2012) Projections to the superior colliculus from inferior parietal, ventral premotor, and ventrolateral prefrontal areas involved in controlling goal-directed hand actions in the macaque. Cereb Cortex 24:1054–1065

    Article  PubMed  Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann NY Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  • Burgess N, Becker S, King JA, O’Keefe J (2001) Memory for events and their spatial context: models and experiments. Philos Trans R Soc Lond B Biol Sci 356:1493–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushara KO, Weeks RA, Ishii K, Catalan M-J, Tian B, Rauschecker JP, Hallett M (1999) Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nat Neurosci 2:759–766

    Article  CAS  PubMed  Google Scholar 

  • Byrne P, Becker S, Burgess N (2007) Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol Rev 114:340–375

    Article  PubMed  PubMed Central  Google Scholar 

  • de Schotten MT, Urbanski M, Duffau H, Volle E, Lévy R, Dubois B, Bartolomeo P (2005) Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science 309:2226–2228

    Article  Google Scholar 

  • Desmurget M, Sirigu A (2012) Conscious motor intention emerges in the inferior parietal lobule. Curr Opin Neurobiol 22:1004–1011

    Article  CAS  PubMed  Google Scholar 

  • Dimitriadis SI, Laskaris NA, Micheloyannis S (2015) Transition dynamics of EEG-based network microstates during mental arithmetic and resting wakefulness reflects task-related modulations and developmental changes. Cogn Neurodyn 9:371–387

    Article  CAS  PubMed  Google Scholar 

  • Dosenbach NUF et al (2010) Prediction of individual brain maturity using fMRI. Science 329:1358–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eddy DR, Schiflett SG, Schlegel RE, Shehab RL (1998) Cognitive performance aboard the life and microgravity spacelab. Acta Astronaut 43:193–210

    Article  CAS  PubMed  Google Scholar 

  • Epstein RA (2008) Parahippocampal and retrosplenial contributions to human spatial navigation. Trend Cogn Sci 12:388–396

    Article  Google Scholar 

  • Epstein RA, Parker WE, Feiler AM (2007) Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J Neurosci 27:6141–6149

    Article  CAS  PubMed  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  • Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD (2007) Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 164:450–457

    Article  PubMed  Google Scholar 

  • Grigoriev AI, Egorov AD (1992) General mechanisms of the effect of weightlessness on the human body. Adv Space Biol Med 2:1–42

    Article  CAS  PubMed  Google Scholar 

  • Haber SN, Calzavara R (2009) The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull 78:69–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Henderson JM, Larson CL, Zhu DC (2007) Cortical activation to indoor versus outdoor scenes: an fMRI study. Exp Brain Res 179:75–84

    Article  PubMed  Google Scholar 

  • Henderson JM, Larson CL, Zhu DC (2008) Full scenes produce more activation than close-up scenes and scene-diagnostic objects in parahippocampal and retrosplenial cortex: an fMRI study. Brain Cogn 66:40–49

    Article  PubMed  Google Scholar 

  • Hoffstaedter F et al (2014) The role of anterior midcingulate cortex in cognitive motor control. Hum Brain Mapp 35:2741–2753

    Article  PubMed  Google Scholar 

  • Kawai Y, Doi M, Setogawa A, Shimoyama R, Ueda K, Asai Y (2003) Effects of microgravity on cerebral hemodynamics. Yonago Acta Med 46:1–8

    Google Scholar 

  • Kosaki Y, Lin TCE, Horne MR, Pearce JM, Gilroy KE (2014) The role of the hippocampus in passive and active spatial learning. Hippocampus 24:1633–1652

    Article  PubMed  PubMed Central  Google Scholar 

  • Leung H, Gore JC, Goldman-Rakic PS (2002) Sustained mnemonic response in the human middle frontal gyrus during on-line storage of spatial memoranda. J Cogn Neurosci 14:659–671

    Article  PubMed  Google Scholar 

  • Liao Y, Zhang J, Huang Z, Xi Y, Zhang Q, Zhu T, Liu X (2012) Altered baseline brain activity with 72 h of simulated microgravity—initial evidence from resting-state fMRI. PLoS One 7:e52558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao Y, Miao D, Huan Y, Yin H, Xi Y, Liu X (2013) Altered regional homogeneity with short-term simulated microgravity and its relationship with changed performance in mental transformation. PLoS One 8:e64931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao Y, Lei M, Huang H, Wang C, Duan J, Li H, Liu X (2015) The time course of altered brain activity during 7-day simulated microgravity. Front Behav Neurosci 9:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Lockhart SN, Luck SJ, Geng J, Beckett L, Disbrow EA, Carmichael O, DeCarli C (2015) White matter hyperintensities among older adults are associated with futile increase in frontal activation and functional connectivity during spatial search. PLoS One 10:e0122445

    Article  PubMed  PubMed Central  Google Scholar 

  • Maguire E (2001) The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand J Psychol 42:225–238

    Article  CAS  PubMed  Google Scholar 

  • Mallis MM, De Roshia C (2005) Circadian rhythms, sleep, and performance in space. Aviat Space Environ Med 76:B94–B107

    CAS  PubMed  Google Scholar 

  • Manzey D, Lorenz B, Heuer H, Sangals J (2000) Impairments of manual tracking performance during spaceflight: more converging evidence from a 20-day space mission. Ergonomics 43:589–609

    Article  CAS  PubMed  Google Scholar 

  • Messerotti Benvenuti S, Bianchin M, Angrilli A (2011) Effects of simulated microgravity on brain plasticity: a startle reflex habituation study. Physiol Behav 104:503–506

    Article  CAS  PubMed  Google Scholar 

  • Moore ST, Mac Dougall HG, Paloski WH (2010) Effects of head-down bed rest and artificial gravity on spatial orientation. Exp Brain Res 204:617–622

    Article  PubMed  Google Scholar 

  • Owen AM, Milner B, Petrides M, Evans AC (1996) A specific role for the right parahippocampal gyrus in the retrieval of object-location: a positron emission tomography study. J Cogn Neurosci 8:588–602

    Article  CAS  PubMed  Google Scholar 

  • Pavy-Le Traon A, Heer M, Narici MV, Rittweger J, Vernikos J (2007) From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 101:143–194

    Article  CAS  PubMed  Google Scholar 

  • Pearce JM, Good MA, Jones PM, McGregor A (2004) Transfer of spatial behavior between different environments: implications for theories of spatial learning and for the role of the hippocampus in spatial learning. J Exp Psychol Anim Behav Process 30:135–147

    Article  PubMed  Google Scholar 

  • Renier LA, Anurova I, De Volder AG, Carlson S, VanMeter J, Rauschecker JP (2010) Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blind. Neuron 68:138–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  CAS  PubMed  Google Scholar 

  • Seth A (2008) Causal networks in simulated neural systems. Cogn Neurodyn 2:49–64

    Article  PubMed  PubMed Central  Google Scholar 

  • Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD (2012) Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb Cortex 22:158–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiers HJ, Maguire EA (2006) Thoughts, behaviour, and brain dynamics during navigation in the real world. NeuroImage 31:1826–1840

    Article  PubMed  Google Scholar 

  • Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21:489–510

    Article  PubMed  Google Scholar 

  • Vaitl D, Gruppe H, Stark R, Pössel P (1996) Simulated micro-gravity and cortical inhibition: a study of the hemodynamic-brain interaction. Biol Psychol 42:87–103

    Article  CAS  PubMed  Google Scholar 

  • Vann SD, Aggleton JP (2002) Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory. Behav Neurosci 116:85

    Article  PubMed  Google Scholar 

  • Vann SD, Aggleton JP (2004) Testing the importance of the retrosplenial guidance system: effects of different sized retrosplenial cortex lesions on heading direction and spatial working memory. Behav Brain Res 155:97–108

    Article  PubMed  Google Scholar 

  • Vann SD, Aggleton JP, Maguire EA (2009) What does the retrosplenial cortex do? Nat Rev Neurosci 10:792–802

    Article  CAS  PubMed  Google Scholar 

  • Vapnik V (1995) The natures of statistical learning theory. Springer, New York

    Book  Google Scholar 

  • Wilmer A, de Lussanet MHE, Lappe M (2010) A method for the estimation of functional brain connectivity from time-series data. Cogn Neurodyn 4:133–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng L-L et al (2012) Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain 135:1498–1507

    Article  PubMed  Google Scholar 

  • Zeng L-L et al (2014) Neurobiological basis of head motion in brain imaging. Proc Natl Acad Sci USA 111:6058–6062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Wang Y, Zhou R, Wang L, Tan C (2011) The influence on individual working memory during 15 days—6° head-down bed rest. Acta Astronaut 69:969–974

    Article  Google Scholar 

  • Zhou Y et al (2014) Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity. Front Behav Neurosci 8:200

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation of China (61503397, 61420106001, 91420302, 61375111, and 81272174) and National Basic Research Program of China (2013CB329401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewen Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Ling-Li Zeng and Yang Liao have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, LL., Liao, Y., Zhou, Z. et al. Default network connectivity decodes brain states with simulated microgravity. Cogn Neurodyn 10, 113–120 (2016). https://doi.org/10.1007/s11571-015-9359-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-015-9359-8

Keywords

Navigation