Skip to main content
Log in

A minimal mechanistic model for temporal signal processing in the lateral geniculate nucleus

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The receptive fields of cells in the lateral geniculate nucleus (LGN) are shaped by their diverse set of impinging inputs: feedforward synaptic inputs stemming from retina, and feedback inputs stemming from the visual cortex and the thalamic reticular nucleus. To probe the possible roles of these feedforward and feedback inputs in shaping the temporal receptive-field structure of LGN relay cells, we here present and investigate a minimal mechanistic firing-rate model tailored to elucidate their disparate features. The model for LGN relay ON cells includes feedforward excitation and inhibition (via interneurons) from retinal ON cells and excitatory and inhibitory (via thalamic reticular nucleus cells and interneurons) feedback from cortical ON and OFF cells. From a general firing-rate model formulated in terms of Volterra integral equations, we derive a single delay differential equation with absolute delay governing the dynamics of the system. A freely available and easy-to-use GUI-based MATLAB version of this minimal mechanistic LGN circuit model is provided. We particularly investigate the LGN relay-cell impulse response and find through thorough explorations of the model’s parameter space that both purely feedforward models and feedback models with feedforward excitation only, can account quantitatively for previously reported experimental results. We find, however, that the purely feedforward model predicts two impulse response measures, the time to first peak and the biphasic index (measuring the relative weight of the rebound phase) to be anticorrelated. In contrast, the models with feedback predict different correlations between these two measures. This suggests an experimental test assessing the relative importance of feedforward and feedback connections in shaping the impulse response of LGN relay cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andolina IM, Jones HE, Wang W, Sillito AM (2007) Corticothalamic feedback enhances stimulus response precision in the visual system. Proc Natl Acad Sci 104:1685–1690

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya BM, Coyle D, Maguire LP (2011) A thalamo-cortico-thalamic neural mass model to study alpha rhythms in Alzheimer’s disease. Neural Netw 24:631–645

    Article  PubMed  Google Scholar 

  • Blomquist P, Devor A, Indahl UG, Einevoll GT, Dale AM (2009) Estimation of thalamocortical and intracortical network models from joint thalamic single-electrode and cortical laminar-electrode recordings in the rat barrel system. PLoS Comput Biol 5:e1000328

    Article  PubMed  Google Scholar 

  • Briggs F, Usrey WM (2005) Temporal properties of feedforward and feedback pathways between the thalamus and visual cortex in ferret. Thalamus Relat Syst 3:133–139

    Article  PubMed  Google Scholar 

  • Briggs F, Usrey WM (2007) A fast, reciprocal pathway between the lateral geniculate nucleus and visual cortex in the macaque monkey. J Neurosci 27:5431–5436

    Article  PubMed  CAS  Google Scholar 

  • Briggs F, Usrey WM (2008) Emerging views of corticothalamic function. Curr Opin Neurobiol 18:403–407

    Article  PubMed  CAS  Google Scholar 

  • Briggs F, Usrey WM (2011) Corticogeniculate feedback and visual processing in the primate. J Physiol 589(1):33–40

    Article  PubMed  CAS  Google Scholar 

  • Cai D, Deangelis G, Freeman R (1997) Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J Neurophysiol 78:1045–1061

    PubMed  CAS  Google Scholar 

  • Carandini M, Horton JC, Sincich LC (2007) Thalamic filtering of retinal spike trains by postsynpatic summation. J Vision 7:1–11

    Article  Google Scholar 

  • Casti A, Xiao Y, Kaplan E (2004) Effects of cortical feedback on LGN dynamics. Soc Neurosci Abstracts 409(7)

  • Casti A, Hayot F, Xiao Y, Kaplan E (2008) A simple model of retina-LGN transmission. J Comp Neurosci 24:235–252

    Article  Google Scholar 

  • Cruse H (1997) Neural networks as cynernetic systems. Thieme Verlag, Stuttgart

    Google Scholar 

  • Cudeiro J, Sillito AM (1996) Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus. J Physiol 490:481–492

    PubMed  CAS  Google Scholar 

  • Dayan P, Abbott L (2001) Theoretical Neuroscience. The MIT Press, Cambridge, MA

    Google Scholar 

  • DeAngelis GC, Ohzawa I, Freeman RD (1995) Receptive-field dynamics in the central visual pathways. Trends Neurosci 18:451–458

    Article  PubMed  CAS  Google Scholar 

  • Derrington AM, Fuchs AF (1979) Spatial and temporal properties of x and y cells in the cat lateral geniculate nucleus. J Physiol 293:347–364

    PubMed  CAS  Google Scholar 

  • Destexhe A, Contreras D, Steriade M (1998) Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J Neurophysiol 79:999–1016

    PubMed  CAS  Google Scholar 

  • Destexhe A (2000) Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex. J Physiol (Paris) 94:391–410

    Article  CAS  Google Scholar 

  • Einevoll G, Heggelund P (2000) Mathematical models for the spatial receptive-field organization of nonlagged X cells in dorsal lateral geniculate nucleus of cat. Vis Neurosci 17:871–885

    Article  PubMed  CAS  Google Scholar 

  • Einevoll GT, Plesser HE (2002) Linear mechanistic models for the dorsal lateral geniculate nucleus of cat probed using drifting grating stimuli. Netw Comp Neural 13:503–530

    Article  CAS  Google Scholar 

  • Einevoll GT, Plesser HE (2011) Extended difference-of-Gaussians model incorporating cortical feedback for relay cells in the lateral geniculate nucleus of cat. Cogn Neurodyn. doi:10.1007/s11571-011-9183-8

  • Enroth-Cugell C, Robson J (1966) The constrast sensitivity of retinal ganglion cells of the cat. J Physiol 181:517–552

    Google Scholar 

  • Ermentrout B (1998) Neural networks as spatio-temporal pattern-forming systems. Rep Prog Phys 61:353–430

    Article  Google Scholar 

  • Gazères N, Borg-Graham LJ, Frégnac Y (1998) A phenomenological model of visually evoked spike trains in cat geniculate nonlagged x-cells. Vis Neurosci 15:1157–1174

    Article  PubMed  Google Scholar 

  • Geisert EE, Langsetmo A, Spear PD (1981) Influence of the cortico-geniculate pathway on response properties of cat lateral geniculate neurons. Brain Res 208(2):409–415

    Article  PubMed  CAS  Google Scholar 

  • Gerstner W (2000) Population dynamics of spiking neurons: fast transients, asynchronous states, and locking. Neural Comp 12:43–89

    Article  CAS  Google Scholar 

  • Godwin DW, Vaughan JW, Sherman SM (1996) Metabotropic glutamate receptors switch visual response mode of lateral geniculate nucleus cells from burst to tonic. J Neurophysiol 76(3):1800–1816

    PubMed  CAS  Google Scholar 

  • Guido W, Sherman SM (1998) Response latencies of cells in the cat’s lateral geniculate nucleus are less variable during burst than tonic firing. Vis Neurosci 15:231–237

    Article  PubMed  CAS  Google Scholar 

  • Hayot F, Tranchina D (2001) Modeling corticofugal feedback and the sensitivity of lateral geniculate neurons to orientation discontinuity. Vis Neurosci 18:865–877

    PubMed  CAS  Google Scholar 

  • Heeger D (1991) Nonlinear model of neural responses in cat visual cortex. In: MS Landy, JA Movshon (eds) Computational models of visual processing, MIT Press, Cambridge, MA, pp 119–133

    Google Scholar 

  • Hillenbrand U, van Hemmen LJ (2000) Spatiotemporal adaptation through corticothalamic loops: a hypothesis. Vis Neurosci 17:107–118

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    PubMed  CAS  Google Scholar 

  • Jin J, Weng C, Yeh CI, Gordon JA, Ruthazer ES, Stryker MP, Swadlow HA, Alonso JM (2008) On- and off-domains of geniculate afferents in cat primary visual cortex. Nat Neurosci 11:88–94

    Article  PubMed  CAS  Google Scholar 

  • Jing W, Liu W-Z, Gong X-W, Gong H-Q, Liang P-J (2010) Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities. Cogn Neurodyn 3:179–188

    Article  Google Scholar 

  • Kaplan E, Marcus S, So YT (1979) Effects of dark adaptation on spatial and temporal properties of receptive fields in cat lateral geniculate nucleus. J Physiol 294:561–580

    PubMed  CAS  Google Scholar 

  • Kaplan E, Mukherjee P, Shapley R (1993) Information filtering in the lateral geniculate nucleus. In: Shapley R, Lam DM-K (eds) Contrast sensitivity, MIT Press, Cambridge, MA, pp 183–200

    Google Scholar 

  • Kaplan E, Purpura K, Shapley RM (1987) Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. J Physiol 391:267–288

    PubMed  CAS  Google Scholar 

  • Kirkland KL, Gerstein GL (1998) A model of cortically induced synchronization in the lateral geniculate nucleus of the cat: a role for low-threshold calcium channels. Vision Res 38:2007–2022

    Article  PubMed  CAS  Google Scholar 

  • Kirkland KL, Sillito AM, Jones HE, West DC, Gerstein GL (2000) Oscillations and long-lasting correlations in a model of the lateral geniculate nucleus and visual cortex. J Neurophysiol 84:1863–1868

    PubMed  CAS  Google Scholar 

  • Köhn J, Wörgötter F (1996) Corticofugal feedback can reduce the visual latency of responses to antagonistic stimuli. Biol Cybern 75(3):199–209

    Article  PubMed  Google Scholar 

  • Liang L, Wang R, Zhang Z (2010) The modeling and simulation of visuospatial working memory. Cogn Neurodyn 4:359–366

    Article  PubMed  Google Scholar 

  • Lumer ED, Edelman GM, Tononi G (1997) Neural Dynamics in a model of the thalamocortical System. I Layers, loops and the emergence of fast synchronous rhythms. Cerebral Cortex 7:207–227

    Article  PubMed  CAS  Google Scholar 

  • MacDonald M (1979) Time lags in biological models (Lecture Notes in Biomathematics). Springer, Berlin

  • Marrocco RT, McClurkin JW, Alkire MT (1996) The influence of the visual cortex on the spatiotemporal response properties of lateral geniculate nucleus cells. Brain Res 737(1–2):110–118

    Article  PubMed  CAS  Google Scholar 

  • Marrocco RT, McClurkin JW, Young RA (1982) Modulation of lateral geniculate nucleus cell responsiveness by visual activation of the corticogeniculate pathway. J Neurosci 2(2):256–263

    PubMed  CAS  Google Scholar 

  • Mastronarde DN (1987) Two classes of single-input x-cells in cat lateral geniculate nucleus. i. receptive-field properties and classification of cells. J Neurophysiol 57(2):357–380

    PubMed  CAS  Google Scholar 

  • Mastronarde DN (1987) Two classes of single-input x-cells in cat lateral geniculate nucleus. ii. retinal inputs and the generation of receptive-field properties. J Neurophysiol 57(2):381–413

    PubMed  CAS  Google Scholar 

  • Mayer J, Schuster HG, Claussen JC, Mölle M (2007) Corticothalamic projections control synchronization in locally coupled bistable thalamic oscillators. Phys Rev Lett 99:068102

    Article  PubMed  Google Scholar 

  • McClurkin JW, Marrocco RT (1984) Visual cortical input alters spatial tuning in monkey lateral geniculate nucleus cells. J Physiol 348:135–152

    PubMed  CAS  Google Scholar 

  • McClurkin JW, Optican LM, Richmond BJ (1994) Cortical feedback increases visual information transmitted by monkey parvocellular lateral geniculate nucleus neurons. Vis Neurosci 11(3):601–617

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA, von Krosigk M (1992) Corticothalamic activation modulates thalamic firing through glutamate “metabotropic” receptors. Proc Natl Acad Sci USA 89:2774–2778

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee P, Kaplan E (1995) Dynamics of neurons in the cat lateral geniculate nucleus: in vivo electrophysiology and computational modeling. J Neurophysiol 74:1222–1243

    PubMed  CAS  Google Scholar 

  • Murphy PC, Sillito AM (1987) Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature 329(6141):727–729

    Article  PubMed  CAS  Google Scholar 

  • Nordbø O, Wyller J, Einevoll GT (2007) Neural network firing-rate models on integral form: effects of temporal coupling kernels on equilibrium-state stability. Biol Cybern 97(3):195–209

    Article  PubMed  Google Scholar 

  • Nordlie E, Gewaltig M-O, Plesser HE (2009) Towards reproducible descriptions of neuronal network models. PLoS Comput Biol 5(8):e1000456

    Article  PubMed  Google Scholar 

  • Nordlie E, Tetzlaff T, Einevoll GT (2010) Firing-rate response properties of spiking neurons: beyond the diffusion limit. Front Comput Neurosci 4:459

    Google Scholar 

  • Oppenheim A, Willsky A (1996) Signals and systems, 2nd ed. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Rodieck R (1965) Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vis Res 5:583–601

    Article  PubMed  CAS  Google Scholar 

  • Ruksenas O, Fjeld IT, Heggelund P (2000) Spatial summation and center-surround antagonism in the receptive field of single units in the dorsal lateral geniculate nucleus of cat: comparison with retinal input. Vis Neurosci 17:855–870

    Article  PubMed  CAS  Google Scholar 

  • Saglam M, Hayashida Y, Murayama N (2009) A retinal circuit model accounting for wide-field amacrine cells. Cogn Neurodyn 1:25–32

    Article  Google Scholar 

  • Satoh S, Usui S (2009) Engineering-approach accelerates computational understanding of V1–V2 neural properties. Cogn Neurodyn 3:1–8

    Article  PubMed  Google Scholar 

  • Shapley R, Lennie P (1985) Spatial frequency analysis in the visual system. Annu Rev Neurosci 8:547–583

    Article  PubMed  CAS  Google Scholar 

  • Sherman S, Guillery R (2001) Exploring the thalamus. Academic Press, New York

    Google Scholar 

  • Sillito AM, Cudeiro J, Murphy PC (1993) Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus. Exp Brain Res 93(1):6–16

    Article  PubMed  CAS  Google Scholar 

  • Sillito AM, Jones HE (2002) Corticothalamic interactions in the transfer of visual information. Philos Trans R Soc Lond B Biol Sci 357(1428):1739–1752

    Article  PubMed  Google Scholar 

  • Sillito AM, Jones HE (2004) Feedback systems in visual processing. In: Chalupa LM, Wernes JS (eds) The visual neurosciences, Vol 1, MIT Press, Cambridge, MA, pp 609–624

    Google Scholar 

  • Sillito AM, Jones HE, Gerstein GL, West DC (1994) Feature-linked synchronization of thalamic relay cell firing induced by feedback from visual cortex. Nature 369:479–482

    Article  PubMed  CAS  Google Scholar 

  • Troyer TW, Krukowski AE, Priebe NJ, Miller KD (1998) Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. J Neurosci 18:5908–5927

    PubMed  CAS  Google Scholar 

  • Troyer TW, Krukowski AE, Miller KD (2002) LGN input to simple cells and contrast-invariant orientation tuning: an analysis. J Neurophysiol 87:2741–2752

    PubMed  Google Scholar 

  • Usrey WM, Reppas JB, Reid RC (1999) Specificity and strength of retinogeniculate connections. J Neurophysiol 82(6):3527–3540

    PubMed  CAS  Google Scholar 

  • Vidyasagar TR, Urbas JV (1982) Orientation sensitivity of cat lgn neurones with and without inputs from visual cortical areas 17 and 18. Exp Brain Res 46(2):157–169

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Jones HE, Andolina IM, Sillito AM (2006) Functional alignment of feedback effects from visual cortex to thalamus. Nat Neurosci 9:1330–1336

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Zhang Z (2007) Energy coding in biological neural networks. Cogn Neurodyn 3:203–212

    Article  Google Scholar 

  • Wolfe J, Palmer LA (1998) Temporal diversity in the lateral geniculate nucleus of cat. Vis Neurosci 15:653–675

    Article  PubMed  CAS  Google Scholar 

  • Wörgötter F, Nelle E, Li B, Funke K (1998) The influence of corticofugal feedback on the temporal structure of visual responses of cat thalamic relay cells. J Physiol 509(Pt 3):797–815

    Article  PubMed  Google Scholar 

  • Yousif N, Denham M (2007) The role of cortical feedback in the generation of the temporal receptive field responses of lateral geniculate nucleus neurons: a computational modelling study. Biol Cybern 97(4):269–277

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Tom Tetzlaff and Hans E. Plesser for careful reading of the manuscript. This work was supported by the Research Council of Norway under the eScience programme (grant no. 178892).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaute T. Einevoll.

Appendices

Appendix 1: Derivation of model on differential form

In the present appendix we derive the differential Eq. (17) for the dynamical variable z(t) defined in (16) when the coupling kernels h ON/OFFcr and h ON/OFFxrc in (12) and (13) are assumed.

Insertion of (12) into (7) gives, by means of (6),

$$ \begin{aligned} R_{\rm c}^{\rm ON}(t)&= F_{\rm c}^{\rm ON}\left(w_{\rm cr}^{\rm ON}\int\limits_{-\infty}^{t}h_{\rm cr}^{\rm ON}(t-s) \hat{R}_{\rm r}^{\rm ON}(s)ds \right)\\ &=F_{\rm c}^{\rm ON}\left(w_{\rm cr}^{\rm ON}\int\limits_{-\infty}^{t}\delta((t-\Updelta_{\rm cr})-s) \hat{R}_{\rm r}^{\rm ON}(s)ds \right)\\ &= F_{\rm c}^{\rm ON}\left(w_{\rm cr}^{\rm ON}\hat{R}_{\rm r}^{\rm ON}(t-\Updelta_{\rm cr})\right)\\ &=F_{\rm c}^{\rm ON}\left(w_{\rm cr}^{\rm ON} F_{\rm r}^{\rm ON}\left(A_{\rm g} w_{\rm rg}^{\rm ON}\left(\bar{i}_{\rm r0}^{\rm ON}+\bar{r}_{\rm g}(t-\Updelta_{\rm cr})+z(t-\Updelta_{\rm cr}) \right)\right)\right) \end{aligned} $$
(56)

where we also have used the definition for \(\bar{r}_{\rm g}(t)\) in (18) and \(\bar{i}_{{\rm r0}}^{\rm ON}\) in (21). (Note that the notation \(\hat{R}_{\rm c}^{\rm ON}(t)\) in (7) has been replaced by R ONc (t) in (56) since the background firing rates of the cortical cells have been assumed zero.) Correspondingly, we find that

$$ R_{\rm c}^{\rm OFF}(t) = F_{\rm c}^{\rm OFF}\left(w_{\rm cr}^{\rm OFF}F_{\rm r}^{\rm OFF} \left(A_{\rm g} w_{\rm rg}^{\rm ON}\left(\bar{i}_{\rm r0}^{\rm OFF}-\bar{r}_{\rm g}(t-\Updelta_{\rm cr})-z(t-\Updelta_{\rm cr})\right)\right)\right), $$
(57)

and we have arrived at (25) and (26), respectively.

Differentiation of the expression for the differential delay equation with absolute delay z in (16) with respect to t gives

$$ \begin{aligned} \frac{d}{dt}z(t)&=\frac{w_{\rm rc}^{\rm ON}}{A_{\rm g} w_{\rm rg}^{\rm ON}} \frac{d}{dt} \left((h_{\rm rc}^{\rm ON}\ast R_{\rm c}^{\rm ON})(t)\right)+\frac{w_{\rm rc}^{\rm OFFx}}{A_{\rm g} w_{\rm rg}^{\rm ON}} \frac{d}{dt}\left((h_{\rm rc}^{\rm OFFx}\ast R_{\rm c}^{\rm OFF})(t)\right)\\ &=\frac{w_{\rm rc}^{\rm ON}}{A_{\rm g} w_{\rm rg}^{\rm ON}} \frac{d}{dt}\left(\int\limits_{-\infty}^t \frac{e^{-(t-\Updelta_{\rm rc}-s)/\tau_{\rm rc}}}{\tau_{\rm rc}} \Uptheta(t-\Updelta_{\rm rc}-s) R_{\rm c}^{\rm ON}(s)ds\right)\\ &\quad +\frac{w_{\rm rc}^{\rm OFFx}}{A_{\rm g} w_{\rm rg}^{\rm ON}} \frac{d}{dt}\left(\int\limits_{-\infty}^t \frac{e^{-(t-\Updelta_{\rm rc}-s)/\tau_{\rm rc}}}{\tau_{\rm rc}} \Uptheta(t-\Updelta_{\rm rc}-s) R_{\rm c}^{\rm OFF}(s)ds \right) \end{aligned} $$
(58)

where we have used (13). Since \(\Uptheta(t-\Updelta_{\rm rc}-s)=1\) only for \(s< t-\Updelta_{\rm rc}\), the integrals in (58) can be rewritten as

$$ \int\limits_{-\infty}^{t}\frac{e^{-(t-\Updelta_{\rm rc}-s)/\tau_{\rm rc}}} {\tau_{\rm rc}} \Uptheta(t-\Updelta_{\rm rc}-s)R_{\rm c}^{\rm ON/OFF}(s)ds=\int\limits_{-\infty}^u \frac{e^{-(u-s)/\tau_{\rm rc}}} {\tau_{\rm rc}} R_{\rm c}^{\rm ON/OFF}(s)ds, $$
(59)

where we have introduced \(u=t-\Updelta_{\rm rc}\). By means of the general differentiation rule

$$ \frac{d}{dt}\left(\int\limits^{t}_{a}F(t,s)ds\right)= F(t,t) + \int\limits^{t}_{a} \frac{\partial}{{\partial}t} F(t,s)ds $$
(60)

we now find for the first integral in (58),

$$ \begin{aligned} &\frac{w_{\rm rc}^{\rm ON}}{A_{\rm g} w_{\rm rg}^{\rm ON}} \frac{d}{du}\left[\int\limits_{-\infty}^u \frac{e^{-(u-s)/\tau_{\rm rc}}}{\tau_{\rm rc}} R_{\rm c}^{\rm ON}(s)ds \right]\\ &\quad =\frac{w_{\rm rc}^{\rm ON}}{A_{\rm g} w_{\rm rg}^{\rm ON}} \frac{1}{\tau_{\rm rc}}\left(R_{\rm c}^{\rm ON}(u)-\int\limits_{-\infty}^u \frac{e^{-(u-s)/\tau_{\rm rc}}}{\tau_{\rm rc}} R_{\rm c}^{\rm ON}(s)ds \right)\\ &\quad=\frac{w_{\rm rc}^{\rm ON}}{A_{\rm g} w_{\rm rg}^{\rm ON}} \frac{1}{\tau_{\rm rc}} \left(R_{\rm c}^{\rm ON}(t-\Updelta_{\rm rc}) -\int\limits_{-\infty}^{t-\Updelta_{\rm rc}} \frac{e^{-(t-\Updelta_{\rm rc}-s)/\tau_{\rm rc}}}{\tau_{\rm rc}} R_{\rm c}^{{\rm ON}}(s)ds \right)\\ &\quad=\frac{w_{\rm rc}^{\rm ON}}{A_{\rm g} w_{\rm rg}^{\rm ON}}\frac{1}{\tau_{\rm rc}} \left(R_{\rm c}^{\rm ON}(t-\Updelta_{\rm rc})-\int\limits_{-\infty}^{t}\frac{e^{-(t-\Updelta_{\rm rc}-s)/\tau_{\rm rc}}}{\tau_{\rm rc}}\Uptheta(t-\Updelta_{\rm rc}-s) R_{\rm c}^{\rm ON}(s)ds \right)\\ &\quad =\frac{w_{\rm rc}^{\rm ON}}{A_{\rm g} w_{\rm rg}^{\rm ON}} \frac{1}{\tau_{\rm rc}}\left(R_{\rm c}^{{\rm ON}}(t-\Updelta_{\rm rc})-(h_{\rm rc}^{\rm ON} \ast R_{\rm c}^{\rm ON})(t)\right) \end{aligned} $$
(61)

For the OFF integral in (58) we correspondingly find

$$ \frac{w_{\rm rc}^{\rm OFFx}}{A_{\rm g} w_{\rm rg}^{\rm ON}} \frac{d}{du}\left[\int\limits_{-\infty}^u \frac{e^{-(u-s)/\tau_{\rm rc}}}{\tau_{\rm rc}} R_{\rm c}^{\rm OFF}(s)ds \right]= \frac{w_{\rm rc}^{\rm OFFx}}{A_{\rm g} w_{\rm rg}^{\rm ON}} \frac{1}{\tau_{\rm rc}}\left(R_{\rm c}^{\rm OFF}(t-\Updelta_{\rm rc})-(h_{\rm rc}^{\rm OFFx} \ast R_{\rm c}^{\rm OFF})(t)\right) $$
(62)

With the use of the definition for z(t) in (16) we thus find that the differential equation for z(t) in (58) simplifies to

$$ \frac{d}{dt} z(t)=-\frac{z(t)}{\tau_{\rm rc}}+\frac{w_{\rm rc}^{\rm ON}}{A_{\rm g} w_{\rm rg}^{\rm ON}\tau_{\rm rc}} R_{\rm c}^{\rm ON}(t-\Updelta_{\rm rc})+\frac{w_{\rm rc}^{\rm OFFx}}{A_{\rm g} w_{\rm rg}^{\rm ON}\tau_{\rm rc}} R_{\rm c}^{\rm OFF}(t-\Updelta_{\rm rc}) $$
(63)

Use of the expressions for R ONc (t) and R OFFc (t) in (56) and (57), respectively, and the definition \(\Updelta_{\rm fb} \equiv \Updelta_{\rm rc}+\Updelta_{\rm cr}\) in (20), then gives the delay differential equation with absolute delay (17) for z(t) in the main text.

Appendix 2 : Threshold firing-rate functions

Use of threshold firing-rate functions as described in (27)–(30) in the expression for R ONc (t) in (25) gives

$$ R_{\rm c}^{\rm ON}(t)=A_{\rm g} w_{\rm rg}^{\rm ON} w_{\rm rg}^{\rm ON}\left[\left[\bar{i}_{\rm r0}^{\rm ON}+\bar{r}_{\rm g}(t-\Updelta_{\rm cr})+ z(t-\Updelta_{\rm cr})-\bar{\lambda}_{\rm r}^{\rm ON}\right]_+ -\bar{\lambda}_{\rm c}^{\rm ON}\right]_+ $$
(64)

where we have introduced \(\bar{\lambda}_{\rm r}^{\rm ON} \equiv \Uplambda_{\rm r}^{\rm ON}/(A_{\rm g} w_{\rm rg}^{\rm ON})\) and \(\bar{\lambda}_{\rm c}^{\rm ON} \equiv \Uplambda_{\rm c}^{\rm ON}/(A_{\rm g} w_{\rm rg}^{\rm ON} w_{\rm cr}^{\rm ON})\). The requirement of zero background firing rate for the cortical ON cells translates to the constraint

$$ \bar{\lambda}_{\rm c}^{\rm ON} \geq \left[\bar{i}_{\rm r}^{\rm ON} - \bar{\lambda}_{\rm r}^{\rm ON}\right]_+ =\left[-\lambda_{\rm r}^{\rm ON}\right]_+ \geq 0, $$
(65)

where we have used the definition of λ ONr in (39).

Since we enforce that \(\bar{\lambda}_{\rm c}^{\rm ON} \geq 0\), the innermost half-wave rectification in (64) can be removed. (For the cases where \(\left(\bar{r}_{\rm g}(t-\Updelta_{\rm cr})+ z(t-\Updelta_{\rm cr})-\lambda_{\rm r}^{\rm ON}\right) < 0\), the function (64) will be zero also with the innermost half-wave rectification function replaced by the linear function). The expression (64) thus simplifies to

$$ R_{\rm c}^{\rm ON}(t)=A_{\rm g} w_{\rm rg}^{\rm ON} w_{\rm cr}^{\rm ON} \left[\bar{r}_{\rm g}(t-\Updelta_{\rm cr})+ z(t-\Updelta_{\rm cr})- \lambda_{\rm c}^{{\rm ON}}\right]_+ $$
(66)

corresponding to (37) in the main text. Here the definition of λ ONc0 in (33) has been used. A corresponding argument for R OFFc (t) gives

$$ R_{\rm c}^{\rm OFF}(t)=A_{\rm g} w_{\rm rg}^{\rm ON} w_{\rm cr}^{\rm OFF}\left[-\left(\bar{r}_{\rm g}(t-\Updelta_{\rm cr})+ z(t-\Updelta_{\rm cr})-\lambda_{\rm c}^{\rm OFF}\right)\right]_+ $$
(67)

corresponding to (38) in the main text. Insertion of these new expression for R ONc (t) and R OFFc (t) into

$$ \frac{d}{dt}z(t)=-\frac{z(t)}{\tau_{\rm rc}}+\frac{w_{\rm rc}^{\rm ON}}{A_{\rm g} w_{\rm rg}^{\rm ON}\tau_{\rm rc}} R_{\rm c}^{\rm ON}(t-\Updelta_{\rm rc})+\frac{w_{\rm rc}^{\rm OFFx}}{A_{\rm g} w_{\rm rg}^{\rm ON}\tau_{\rm rc}} R_{\rm c}^{\rm OFF}(t-\Updelta_{\rm rc}) $$
(68)

then gives (31) in the main text.

Appendix 3: Numerical methods

General: In the numerical investigations we needed to solve the delay differential equation in (31). This was done in MATLAB using the routine dde23 (and in the case of zero delay the routine ode45 ). The auxiliary variable z(t) was set to be zero for all times prior to stimulus onset.

Simulation of drifting-grating responses: In numerical evaluations of the responses to drifting gratings, the transient part of the response following stimulus onset was omitted. The MATLAB routine fft implementing the fast Fourier transform was then used to extract the first harmonic component from the steady-state part of the response.

Simulations of impulse response: We first simulated the first 250 ms of impulse response after onset of the retinal input, cf. Fig. 4 to obtain t max and I BP. If four or more phases were present in these first 250 ms, we evaluated the impulse-response for 250 ms more. The normalized rebound magnitude (NRM) was then found by evaluating the integrals over the first and all subsequent phases, respectively, using the MATLAB routine quadl . However, if the area of the fourth phase was found to be larger than one hundredth of the area of the first phase, NRM was not calculated, cf. white regions in the phase plots in Figs. 7 and 8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norheim, E.S., Wyller, J., Nordlie, E. et al. A minimal mechanistic model for temporal signal processing in the lateral geniculate nucleus. Cogn Neurodyn 6, 259–281 (2012). https://doi.org/10.1007/s11571-012-9198-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-012-9198-9

Keywords

Navigation