Skip to main content
Log in

Säure-Basen-Störungen und Nierensteine

Acid-base disorders and kidney stones

  • Leitthema
  • Published:
Der Nephrologe Aims and scope

Zusammenfassung

Säure-Basen-Störungen beeinflussen die Zusammensetzung und damit die Lithogenizität des Urins maßgeblich. Obwohl die physiologische Redundanz relativ groß ist, kommt es in speziellen klinischen Situationen trotzdem zu einer relevanten Häufung von Nierensteinen. Nierensteine aus Kalziumphosphat, Harnsäure oder Ammoniumurat sind häufig mit systemischen Säure-Basen-Störungen assoziiert. Zur frühzeitigen Erkennung und Einleitung effektiver Therapiemaßnahmen sind Kenntnisse der zugrunde liegenden Pathomechanismen unerlässlich. Ziel dieses Übersichtsartikels ist es, dem Leser die Ursachen und Therapieoptionen bei Nierensteinen, die im Zusammenhang mit Störungen des systemischen Säure-Basen-Haushalts stehen, näherzubringen.

Abstract

Acid-base disturbances directly influence the composition and hence the lithogenicity of urine. Although the physiological redundancy is relatively large, the risk for the development of kidney stones is increased under certain clinical circumstances. Kidney stones containing calcium phosphate, uric acid or ammonium urate are frequently associated with systemic acid-base disturbances. For early recognition and prompt initiation of effective treatment measures for these disorders, a thorough knowledge of the underlying pathomechanisms is critical. The purpose of this review is to summarize the pathophysiology and treatment options of kidney stones associated with systemic acid-base disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Alexander RT, Cordat E, Chambrey R et al (2016) Acidosis and urinary calcium excretion: insights from genetic disorders. J Am Soc Nephrol 27:3511–3520

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ambuhl PM, Zajicek HK, Wang H et al (1998) Regulation of renal phosphate transport by acute and chronic metabolic acidosis in the rat. Kidney Int 53:1288–1298

    Article  CAS  PubMed  Google Scholar 

  3. Bushinsky DA, Frick KK (2000) The effects of acid on bone. Curr Opin Nephrol Hypertens 9:369–379

    Article  CAS  PubMed  Google Scholar 

  4. Cameron MA, Maalouf NM, Adams-Huet B et al (2006) Urine composition in type 2 diabetes: predisposition to uric acid nephrolithiasis. J Am Soc Nephrol 17:1422–1428

    Article  CAS  PubMed  Google Scholar 

  5. Corbin Bush N, Twombley K, Ahn J et al (2013) Prevalence and spot urine risk factors for renal stones in children taking topiramate. J Pediatr Urol 9:884–889

    Article  PubMed  Google Scholar 

  6. Daudon M, Bouzidi H, Bazin D (2010) Composition and morphology of phosphate stones and their relation with etiology. Urol Res 38:459–467

    Article  CAS  PubMed  Google Scholar 

  7. Dhayat NA, Schaller A, Albano G et al (2016) The vacuolar H+-ATPase B1 subunit polymorphism p.E161K associates with impaired urinary acidification in recurrent stone formers. J Am Soc Nephrol 27:1544–1554

    Article  CAS  PubMed  Google Scholar 

  8. Dhayat NA, Gradwell MW, Pathare G et al (2017) Furosemide/Fludrocortisone test and clinical parameters to diagnose incomplete distal renal tubular acidosis in kidney stone formers. Clin J Am Soc Nephrol 12(9):1507–1517. https://doi.org/10.2215/CJN.01320217

    Article  PubMed  Google Scholar 

  9. Domrongkitchaiporn S, Pongsakul C, Stitchantrakul W et al (2001) Bone mineral density and histology in distal renal tubular acidosis. Kidney Int 59:1086–1093

    Article  CAS  PubMed  Google Scholar 

  10. Domrongkitchaiporn S, Pongskul C, Sirikulchayanonta V et al (2002) Bone histology and bone mineral density after correction of acidosis in distal renal tubular acidosis. Kidney Int 62:2160–2166

    Article  CAS  PubMed  Google Scholar 

  11. Evan AP, Coe FL, Lingeman JE et al (2007) Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec (Hoboken) 290:1315–1323

    Article  CAS  Google Scholar 

  12. Evan AP, Lingeman J, Coe F et al (2007) Renal histopathology of stone-forming patients with distal renal tubular acidosis. Kidney Int 71:795–801

    Article  CAS  PubMed  Google Scholar 

  13. Fabris A, Bernich P, Abaterusso C et al (2009) Bone disease in medullary sponge kidney and effect of potassium citrate treatment. Clin J Am Soc Nephrol 4:1974–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fabris A, Lupo A, Bernich P et al (2010) Long-term treatment with potassium citrate and renal stones in medullary sponge kidney. Clin J Am Soc Nephrol 5:1663–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fink HA, Wilt TJ, Eidman KE et al (2013) Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American College of Physicians Clinical Guideline. Ann Intern Med 158:535–543

    Article  PubMed  Google Scholar 

  16. Gambaro G, Croppi E, Coe F et al (2016) Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J Nephrol 29:715–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goodman AD, Lemann J Jr., Lennon EJ et al (1965) Production, excretion, and net balance of fixed acid in patients with renal acidosis. J Clin Invest 44:495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goyal M, Grossberg RI, O’riordan MA et al (2009) Urolithiasis with topiramate in nonambulatory children and young adults. Pediatr Neurol 40:289–294

    Article  PubMed  Google Scholar 

  19. Higashihara E, Nutahara K, Niijima T (1988) Renal hypercalciuria and metabolic acidosis associated with medullary sponge kidney: effect of alkali therapy. Urol Res 16:95–100

    Article  CAS  PubMed  Google Scholar 

  20. Igarashi T, Inatomi J, Sekine T et al (1999) Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities. Nat Genet 23:264–266

    Article  CAS  PubMed  Google Scholar 

  21. Jhagroo RA, Wertheim ML, Penniston KL (2016) Alkali replacement raises urinary citrate excretion in patients with topiramate-induced hypocitraturia. Br J Clin Pharmacol 81:131–136

    Article  PubMed  Google Scholar 

  22. Lemann J Jr., Adams ND, Wilz DR et al (2000) Acid and mineral balances and bone in familial proximal renal tubular acidosis. Kidney Int 58:1267–1277

    Article  CAS  PubMed  Google Scholar 

  23. Maalouf NM, Cameron MA, Moe OW et al (2004) Novel insights into the pathogenesis of uric acid nephrolithiasis. Curr Opin Nephrol Hypertens 13:181–189

    Article  PubMed  Google Scholar 

  24. Maalouf NM, Cameron MA, Moe OW et al (2010) Metabolic basis for low urine pH in type 2 diabetes. Clin J Am Soc Nephrol 5:1277–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maalouf NM, Langston JP, Van Ness PC et al (2011) Nephrolithiasis in topiramate users. Urol Res 39:303–307

    Article  CAS  PubMed  Google Scholar 

  26. Matlaga BR, Coe FL, Evan AP et al (2007) The role of Randall’s plaques in the pathogenesis of calcium stones. J Urol 177:31–38

    Article  PubMed  Google Scholar 

  27. Moe OW, Preisig PA (2006) Dual role of citrate in mammalian urine. Curr Opin Nephrol Hypertens 15:419–424

    Article  CAS  PubMed  Google Scholar 

  28. Pak CY, Eanes ED, Ruskin B (1971) Spontaneous precipitation of brushite in urine: evidence that brushite is the nidus of renal stones originating as calcium phosphate. Proc Natl Acad Sci USA 68:1456–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pak CY, Poindexter JR, Adams-Huet B et al (2003) Predictive value of kidney stone composition in the detection of metabolic abnormalities. Am J Med 115:26–32

    Article  CAS  PubMed  Google Scholar 

  30. Pak CY, Moe OW, Maalouf NM et al (2009) Comparison of semi-empirical and computer derived methods for estimating urinary saturation of brushite. J Urol 181:1423–1428

    Article  PubMed  PubMed Central  Google Scholar 

  31. Preminger GM, Sakhaee K, Skurla C et al (1985) Prevention of recurrent calcium stone formation with potassium citrate therapy in patients with distal renal tubular acidosis. J Urol 134:20–23

    Article  CAS  PubMed  Google Scholar 

  32. Preminger GM, Sakhaee K, Pak CY (1987) Hypercalciuria and altered intestinal calcium absorption occurring independently of vitamin D in incomplete distal renal tubular acidosis. Metabolism 36:176–179

    Article  CAS  PubMed  Google Scholar 

  33. Rodgers A, Allie-Hamdulay S, Jackson G (2006) Therapeutic action of citrate in urolithiasis explained by chemical speciation: increase in pH is the determinant factor. Nephrol Dial Transplant 21:361–369

    Article  CAS  PubMed  Google Scholar 

  34. Stauber A, Radanovic T, Stange G et al (2005) Regulation of intestinal phosphate transport. II. Metabolic acidosis stimulates Na(+)-dependent phosphate absorption and expression of the Na(+)-P(i) cotransporter NaPi-IIb in small intestine. Am J Physiol Gastrointest Liver Physiol 288:G501–506

    Article  CAS  PubMed  Google Scholar 

  35. Werness PG, Brown CM, Smith LH et al (1985) EQUIL2: a BASIC computer program for the calculation of urinary saturation. J Urol 134:1242–1244

    Article  CAS  PubMed  Google Scholar 

  36. Wrong O, Davies HE (1959) The excretion of acid in renal disease. Q J Med 28:259–313

    CAS  PubMed  Google Scholar 

  37. Zhang J, Fuster DG, Cameron MA et al (2014) Incomplete distal renal tubular acidosis from a heterozygous mutation of the V‑ATPase B1 subunit. Am J Physiol Renal Physiol 307:F1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Danksagung

Der Autor dankt dem Schweizerischen Nationalfonds für die Unterstützung durch die Forschungsgrants # 31003A_152829 und 33IC30_166785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Fuster.

Ethics declarations

Interessenkonflikt

D. G. Fuster gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

U. Heemann, München

R. P. Wüthrich, Zürich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuster, D.G. Säure-Basen-Störungen und Nierensteine. Nephrologe 13, 30–36 (2018). https://doi.org/10.1007/s11560-017-0200-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-017-0200-8

Schlüsselwörter

Keywords

Navigation